997 resultados para Stable carbon isotope


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thick, apparently continuous section recording events of the latest Paleocene thermal maximum in a neritic setting was drilled at Bass River State Forest, New Jersey as part of ODP Leg 174AX [Miller, Sugarman, Browning et al., 1998]. Integrated nannofossil and magneto-stratigraphy provides a firm chronology supplemented by planktonic foraminiferal biostratigraphy. This chronologic study indicates that this neritic section rivals the best deep-sea sections in providing a complete record of late Paleocene climatic events. Carbon and oxygen isotopes measured on benthic foraminifera show a major (4.0% in carbon, 2.3% in oxygen) negative shift correlative with the global latest Paleocene carbon isotope excursion (CIE). A sharp increase in kaolinite content coincides with the isotope shift in the Bass River section, analogous to increases found in several other records. Carbon and oxygen isotopes remain low and kaolinite content remains high for the remainder of the depositional sequence above the CIE (32.5 ft, 9.9 m), which we estimate to represent 300-500 k.y. We interpret these data as indicative of an abrupt shift to a warmer and wetter climate along the North American mid-Atlantic coast, in concert with global events associated with the CIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 m record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ~1.2-0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ~500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages (MIS) 13-37, and although less precise dating is available for older sediments, these trends appear to continue through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16, and 22-24) and faunal turnover (MIS 12-24). Abundant calcareous planktonic (mainly Neogloboquadrina pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200-300 ka in ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea ice cover prior to the last few 100-ka cycles, pore water dissolution, or both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogenic components of sediment accumulated at high rates beneath frontal zones of the Indian and Pacific oceans during the late Miocene and early Pliocene. The delta13C of bulk and foraminiferal carbonate also decreased during this time interval. Although the two observations may be causally linked, and signify a major perturbation in global biogeochemical cycling, no site beneath a frontal zone has independent records of export production and delta13C on multiple carbonate phases across the critical interval of interest. Deep Sea Drilling Project (DSDP) site 590 lies beneath the Tasman Front (TF), an eddy-generating jetstream in the southwest Pacific Ocean. To complement previous delta13C records of planktic and benthic foraminifera at this location, late Neogene records of CaCO3 mass accumulation rate (MAR), Ca/Ti, Ba/Ti, Al/Ti, and of bulk carbonate and foraminiferal delta13C were constructed at site 590. The delta13C records include bulk sediment, bulk sediment fractions (<63 µm and 5-25 µm), and the planktic foraminifera Globigerina bulloides, Globigerinoides sacculifer (with and without sac), and Orbulina universa. Using current time scales, CaCO3 MARs, Ca/Ti, Al/Ti and Ba/Ti ratios are two to three times higher in upper Miocene and lower Pliocene sediment relative to overlying and underlying units. A significant decrease also occurs in all delta13C records. All evidence indicates that enhanced export production - the 'biogenic bloom' - extended to the southwest Pacific Ocean between ca. 9 and 3.8 Ma, and this phenomenon is coupled with changes in delta13C - the 'Chron C3AR carbon shift'. However, CaCO3 MARs peak ca. 5 Ma whereas elemental ratios are highest ca. 6.5 Ma; foraminiferal delta13C starts to decrease ca. 8 Ma whereas bulk carbonate delta13C begins to drop ca. 5.6 Ma. Temporal discrepancies between the records can be explained by changes in the upwelling regime at the TF, perhaps signifying a link between changes in ocean-atmosphere circulation change and widespread primary productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sites 1033 and 1034 of ODP Leg 169S in Saanich Inlet have an unusual diagenetic system, that has the appearance of being depth reversed, i.e. a bacterial methane accumulation zone underlain by a sulphate reduction zone. During the late Pleistocene grey, undifferentiated, glacio-marine clays were deposited with low Corg contents (<0.4 wt.%), and interstitial fluids replete in SO4 (ca. 27 mM), devoid of CH4 and low in nutrients. This indicates oxic conditions are present, reflecting the open exchange of waters with Haro Strait during the Pleistocene before the Saanich Peninsula emerged. In the earliest Holocene (ca. 11,000 years BP) the inlet was formed, severely restricting water circulation, and leading to the presence of anoxic bottom waters. The sediments are laminated and show a dramatic rise to high Corg, Norg and Stot contents (up to 2.5, 0.4, 1.4 wt.%, respectively) over a period of ca. 1000 years. The nutrient concentrations are especially high (TA, NH4, PO4 up to 115 meq/l, 20 mM and 400 µM, respectively), SO4 is exhausted and CH4 is prolific. Stable carbon isotope ratio measurements of CH4 and co-existing CO2 indicate that methanogenesis is via carbonate reduction (delta13C-CH4 ca. -60 to - 70 per mil, delta13C-CO2 ca. +10 per mil). At the sulphate-methane interfaces, both at the near-surface and at 50 mbsf (Site 1033) and 80 mbsf (Site 1034) methane consumption by sulphate reducing bacteria is intensive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intensification of Northern Hemisphere Glaciation (iNHG) is one of the critical climate thresholds in the Cenozoic. This study focuses on marine sediments recovered from Marine Isotope Stages 101/100 at the Ocean Drilling Program Site 1083 to assesses the impact of the iNHG on continental southern African vegetation through n-alkane (straight-chain hydrocarbon) abundance and delta13C values. The n-alkane abundance data yield a convoluted signal due to the number of controlling factors such as the source area, transportation routes and vegetation type. The C31 n-alkane delta13C values, however, exhibit a cyclic pattern with a periodicity of c. 20 ka, and are not correlated to the abundance data. It is inferred that the signal does not represent a change in the geographical source of n-alkanes. Instead, we suggest that the variations are caused by water-stress-induced changes in either carbon isotope fractionation during C3 photosynthesis or subtle changes in the proportion of C3 and C4 plants. These changes, unlike variations in oceanographic proxies, closely track precessional forcing factors and are independent of the prevailing obliquity-forced glacial/interglacial cycles. We conclude that the varying monsoon strength, rather than pCO2 or temperature change, forced changes in southern African vegetation during this period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stable carbon isotopic signature of carbon dioxide (d13CO2) measured in the air occlusions of polar ice provides important constraints on the carbon cycle in past climates. In order to exploit this information for previous glacial periods, one must use deep, clathrated ice, where the occluded air is preserved not in bubbles but in the form of air hydrates. Therefore, it must be established whether the original atmospheric d13CO2 signature can be reconstructed from clathrated ice. We present a comparative study using coeval bubbly ice from Berkner Island and ice from the bubble-clathrate transformation zone (BCTZ) of EPICA Dome C (EDC). In the EDC samples the gas is partitioned into clathrates and remaining bubbles as shown by erroneously low and scattered CO2 concentration values, presenting a worst-case test for d13CO2 reconstructions. Even so, the reconstructed atmospheric d13CO2 values show only slightly larger scatter. The difference to data from coeval bubbly ice is statistically significant. However, the 0.16 per mil magnitude of the offset is small for practical purposes, especially in light of uncertainty from non-uniform corrections for diffusion related fractionation that could contribute to the discrepancy. Our results are promising for palaeo-atmospheric studies of d13CO2 using a ball mill dry extraction technique below the BCTZ of ice cores, where gas is not subject to fractionation into microfractures and between clathrate and bubble reservoirs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future warming is predicted to shift the Earth system into a mode with progressive increase and vigour of extreme climate events possibly stimulating other mechanisms that invigorate global warming. This study provides new data and modelling investigating climatic consequences and biogeochemical feedbacks that happened in a warmer world ~112 Myr ago. Our study focuses on the Cretaceous Oceanic Anoxic Event (OAE) 1b and explores how the Earth system responded to a moderate ~25,000 yr lasting climate perturbation that is modelled to be less than 1 °C in global average temperature. Using a new chronological model for OAE 1b we present high-resolution elemental and bulk carbon isotope records from DSDP Site 545 from Mazagan Plateau off NW Africa and combine this information with a coupled atmosphere-land-ocean model. The simulations suggest that a perturbation at the onset of OAE 1b caused almost instantaneous warming of the atmosphere on the order of 0.3 °C followed by a longer (~45,000 yr) period of ~0.8 °C cooling. The marine records from DSDP Site 545 support that these moderate swings in global climate had immediate consequences for African continental supply of mineral matter and nutrients (phosphorous), subsequent oxygen availability, and organic carbon burial in the eastern subtropical Atlantic, however, without turning the ocean anoxic. The match between modelling results and stratigraphic isotopic data support previous studies [summarized in Jenkyns 2003, doi:10.1098/rsta.2003.1240] in that methane emission from marine hydrates, albeit moderate in dimension, may have been the trigger for OAE 1b, though we can not finally rule out alternative mechanisms. Following the hydrate mechanism a total of 1.15 * 10**18 g methane carbon (delta13C=-60 ?), equivalent to about 10% to the total modern gas hydrate inventory, generated the delta13Ccarb profile recorded in the section. Modelling suggests a combination of moderate-scale methane pulses supplemented by continuous methane emission at elevated levels over ~25,000 yr. The proposed mechanism, though difficult to finally confirm in the geological past, is arguably more likely to occur in a warmer world and apparently perturbs global climate and ocean chemistry almost instantaneously. This study shows that, once set-off, this mechanism can maintain Earth's climate in a perturbed mode over geological time leading to pronounced changes in regional climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon and nitrogen isotope ratios were measured in plant populations and plateau pikas to determine enrichment in stable isotopes of three alpine meadow ecosystems at different elevations in the Qinghai-Tibet Plateau. The results indicated that stable carbon isotope signatures of plant populations at the three locations showed significant variations, delta C-13 of plant populations showed an enrichment of 0.86 parts per thousand per 1000 in over the linear proportion of the altitudinal response, while stable nitrogen isotopes showed no apparent difference. The stable nitrogen isotopes of plateau pikas became significantly isotopically heavier along altitudinal gradients and showed an enrichment of 3.17 parts per thousand/km. Stable carbon isotopes showed no significance, however, and the enrichment of 0.448 parts per thousand/km. delta C-13 and delta N-15 in plateau pikas were not significantly correlated. There appeared to be segregation between the metabolism of stable carbon and nitrogen isotopes of plateau pikas. Variances in metabolic rate at lower water availability and temperatures are presumed to be the main cause of enrichment of stable nitrogen isotopes along altitudinal gradients. Attention should be paid to construct trophic positions and to trace food chain information based oil an isotopic enrichment model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although respiration of organisms and biomass as well as fossil fuel burning industrial production are identified as the major sources, the CO2 flux is still unclear due to the lack of proper measurements. A mass-balance approach that exploits differences in the carbon isotopic signature (delta(13)C) of CO2 Sources and sinks was introduced and may provide a means of reducing uncertainties in the atmospheric budget. delta(13)C measurements of atmospheric CO2 yielded an average of - 10.3 parts per thousand relative to the Peedee Belemnite standard; soil and plants had a narrow range from -25.09 parts per thousand to -26.51 parts per thousand and averaged at -25.80 parts per thousand. Based on the fact of steady fractionation and enrichment during respiration of mitochondria, we obtained the emission Of CO2 of 35.451 mol m(-2) a(-1) and CO2 flux of 0.2149 mu mol m(-2) s(-)1. The positive CO2 flux indicated the Haibei Alpine Meadow Ecosystem a source rather than a sink. The mass-balance model can be applied for other ecosystem even global carbon cycles because it neglects the complicated process of carbon metabolism, however just focuses on stable carbon isotopic compositions in any of compartments of carbon sources and sinks. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured the stable carbon and nitrogen isotope ratios for muscles of the upland buzzards (Buteo hemilasius) and their potential food sources, plateau pikas (Ochotona curzoniae), Qinghai voles (Lasiopodomys fuscus), plateau zokors (Myospalax fontanierii), and several passerine bird species at the alpine meadow in Maduo county, Guoluo prefecture of Qinghai province, People's Republic of China, to provide diet information of upland buzzards, highlighting different diet composition of upland buzzards exposed to different locations. The results demonstrated that stable carbon isotope ratios of upland buzzards, passerine birds, plateau pikas, plateau zokors, and Qinghai voles were -24.42 +/- 0.25parts per thousand, -22.89 +/- 1.48parts per thousand, -25.30 +/- 1.47parts per thousand, -25.78 +/- 0.22parts per thousand, and -25.41 +/- 0.01parts per thousand, respectively, and stable nitrogen isotope ratios were 7.89 +/- 0.38parts per thousand, 8.37 +/- 2.05parts per thousand, 5.83 +/- 1.10parts per thousand, 5.23 +/- 0.34parts per thousand, and 8.86 +/- 0.06parts per thousand, respectively. Fractionation of stable carbon and nitrogen isotope ratios between upland buzzards and their food were 1.03parts per thousand and 2.11parts per thousand, respectively. Based on mass balance principle of stable isotopes and the Euclidean distance mixing model, upland buzzards depended mainly on plateau pikas as food (74.56%). Plateau zokors, Qinghai voles, and passerine birds only contributed a small proportion (25.44%) to diets of upland buzzards. The results were closely accordant with analyses of stomach contents and food pellets, which firmly supported the feasibility of using stable carbon and nitrogen isotope ratios to investigate diet information of upland buzzards. Another study based on stable carbon isotopes showed that upland buzzards living in the Haibei prefecture (another prefecture located in the southeast Qinghai province) mainly preyed on passerine birds (64.96% or more) as food supply. We were alarmed by the preliminary results that widespread poisoning activities of small mammals could reshape the food composition of upland buzzards, influencing the stability and sustainability of the alpine meadow. Bio-control on rodent pests should be carried out rather than the chemical measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as 70) shifts in 13C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C1-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.