950 resultados para Species Distribution Modeling
Resumo:
Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions
Resumo:
Five species are included in the Simulium siolii group, which is placed in the subgenus Psaroniocompsa (Diptera: Simuliidae). Of these five species, only two (Simulium siolii Py-Daniel and Simulium tergospinosum Hamada) have been described in all their life stages, except eggs. Knowledge of the taxonomic characters of all life stages of a species is important in order to clarify interspecific and higher-level taxonomic relationships. The objectives of the present study are to describe the male of Simulium damascenoi Py-Daniel, to provide a list of black-fly species their bionomics and distributions in the state of Amapá, Brazil, and to provide an identification key for larvae and pupae for these species.
Resumo:
The aim of the present study was to investigate the genetic structure of the Valais shrew (Sorex antinorii) by a combined phylogeographical and landscape genetic approach, and thereby to infer the locations of glacial refugia and establish the influence of geographical barriers. We sequenced part of the mitochondrial cytochrome b (cyt b) gene of 179 individuals of S. antinorii sampled across the entire species' range. Six specimens attributed to S. arunchi were included in the analysis. The phylogeographical pattern was assessed by Bayesian molecular phylogenetic reconstruction, population genetic analyses, and a species distribution modelling (SDM)-based hindcasting approach. We also used landscape genetics (including isolation-by-resistance) to infer the determinants of current intra-specific genetic structure. The phylogeographical analysis revealed shallow divergence among haplotypes and no clear substructure within S. antinorii. The starlike structure of the median-joining network is consistent with population expansion from a single refugium, probably located in the Apennines. Long branches observed on the same network also suggest that another refugium may have existed in the north-eastern part of Italy. This result is consistent with SDM, which also suggests several habitable areas for S. antinorii in the Italian peninsula during the LGM. Therefore S. antinorii appears to have occupied disconnected glacial refugia in the Italian peninsula, supporting previous data for other species showing multiple refugia within southern refugial areas. By coupling genetic analyses and SDM, we were able to infer how past climatic suitability contributed to genetic divergence of populations. The genetic differentiation shown in the present study does not support the specific status of S. arunchi.
Resumo:
Anopheles (Nyssorhynchus) lanei Galvão and Amaral is here redescribed using morphological characteristics of adult, male and female, fourth instar larva and pupa. The larva, pupa, and male genitalia are illustrated. Diagnostic morphological characters of adults, male genitalia, fourth instar larva and pupa are provided to distinguish An. lanei from other species of the Argyritarsis section. Species distribution data are based on the published literature records and bionomics data are based on both literature records and field data.
Resumo:
Aim, Location Although the alpine mouse Apodemus alpicola has been given species status since 1989, no distribution map has ever been constructed for this endemic alpine rodent in Switzerland. Based on redetermined museum material and using the Ecological-Niche Factor Analysis (ENFA), habitat-suitability maps were computed for A. alpicola, and also for the co-occurring A. flavicollis and A. sylvaticus. Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections. Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area. Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species.
Resumo:
Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S-SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient.Location Two study areas in the Alps of Switzerland.Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S-SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways - summing binary predictions, summing random draws of binomial trials and summing predicted probabilities - to obtain a final species count.Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S-SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump-shaped pattern of SR observed along the elevational gradient. The S-SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S-SDM approaches the summed binomial trials based on predicted probabilities and summed predicted probabilities - do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S-SDM approaches fail to appropriately reproduce the observed hump-shaped patterns of SR along the elevational gradient.Main conclusions Macroecological approach and S-SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S-SDM by MEM predictions.
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
Climate change has created the need for new strategies in conservation planning that account for the dynamics of factors threatening endangered species. Here we assessed climate change threat to the European otter, a flagship species for freshwater ecosystems, considering how current conservation areas will perform in preserving the species in a climatically changed future. We used an ensemble forecasting approach considering six modelling techniques applied to eleven subsets of otter occurrences across Europe. We performed a pseudo-independent and an internal evaluation of predictions. Future projections of species distribution were made considering the A2 and B2 scenarios for 2080 across three climate models: CCCMA-CGCM2, CSIRO-MK2 and HCCPR HAD-CM3. The current and the predicted otter distributions were used to identify priority areas for the conservation of the species, and overlapped to existing network of protected areas. Our projections show that climate change may profoundly reshuffle the otter's potential distribution in Europe, with important differences between the two scenarios we considered. Overall, the priority areas for conservation of the otter in Europe appear to be unevenly covered by the existing network of protected areas, with the current conservation efforts being insufficient in most cases. For a better conservation, the existing protected areas should be integrated within a more general conservation and management strategy incorporating climate change projections. Due to the important role that the otter plays for freshwater habitats, our study further highlights the potential sensitivity of freshwater habitats in Europe to climate change.
Resumo:
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.
Resumo:
Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.
Resumo:
Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly that biotic interactions remain constant or exert only minor influence on large-scale spatial distributions, which is also largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The joint contribution of biotic and abiotic predictors to explained deviance was relatively small (similar to 9%) compared to the contribution of each predictor set individually (similar to 20% each), indicating that the additional information on the realized niche brought by adding other species as predictors was largely independent of the abiotic (topo-climatic) predictors. The influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors strongly influence prediction of species distributions. Improved prediction of species' potential distributions in future climates and communities may assist strategies for sustainable forest management.
Resumo:
Summary Landscapes are continuously changing. Natural forces of change such as heavy rainfall and fires can exert lasting influences on their physical form. However, changes related to human activities have often shaped landscapes more distinctly. In Western Europe, especially modern agricultural practices and the expanse of overbuilt land have left their marks in the landscapes since the middle of the 20th century. In the recent years men realised that mare and more changes that were formerly attributed to natural forces might indirectly be the result of their own action. Perhaps the most striking landscape change indirectly driven by human activity we can witness in these days is the large withdrawal of Alpine glaciers. Together with the landscapes also habitats of animal and plant species have undergone vast and sometimes rapid changes that have been hold responsible for the ongoing loss of biodiversity. Thereby, still little knowledge is available about probable effects of the rate of landscape change on species persistence and disappearance. Therefore, the development and speed of land use/land cover in the Swiss communes between the 1950s and 1990s were reconstructed using 10 parameters from agriculture and housing censuses, and were further correlated with changes in butterfly species occurrences. Cluster analyses were used to detect spatial patterns of change on broad spatial scales. Thereby, clusters of communes showing similar changes or transformation rates were identified for single decades and put into a temporally dynamic sequence. The obtained picture on the changes showed a prevalent replacement of non-intensive agriculture by intensive practices, a strong spreading of urban communes around city centres, and transitions towards larger farm sizes in the mountainous areas. Increasing transformation rates toward more intensive agricultural managements were especially found until the 1970s, whereas afterwards the trends were commonly negative. However, transformation rates representing the development of residential buildings showed positive courses at any time. The analyses concerning the butterfly species showed that grassland species reacted sensitively to the density of livestock in the communes. This might indicate the augmented use of dry grasslands as cattle pastures that show altered plant species compositions. Furthermore, these species also decreased in communes where farms with an agricultural area >5ha have disappeared. The species of the wetland habitats were favoured in communes with smaller fractions of agricultural areas and lower densities of large farms (>10ha) but did not show any correlation to transformation rates. It was concluded from these analyses that transformation rates might influence species disappearance to a certain extent but that states of the environmental predictors might generally outweigh the importance of the corresponding rates. Information on the current distribution of species is evident for nature conservation. Planning authorities that define priority areas for species protection or examine and authorise construction projects need to know about the spatial distribution of species. Hence, models that simulate the potential spatial distribution of species have become important decision tools. The underlying statistical analyses such as the widely used generalised linear models (GLM) often rely on binary species presence-absence data. However, often only species presence data have been colleted, especially for vagrant, rare or cryptic species such as butterflies or reptiles. Modellers have thus introduced randomly selected absence data to design distribution models. Yet, selecting false absence data might bias the model results. Therefore, we investigated several strategies to select more reliable absence data to model the distribution of butterfly species based on historical distribution data. The results showed that better models were obtained when historical data from longer time periods were considered. Furthermore, model performance was additionally increased when long-term data of species that show similar habitat requirements as the modelled species were used. This successful methodological approach was further applied to assess consequences of future landscape changes on the occurrence of butterfly species inhabiting dry grasslands or wetlands. These habitat types have been subjected to strong deterioration in the recent decades, what makes their protection a future mission. Four spatially explicit scenarios that described (i) ongoing land use changes as observed between 1985 and 1997, (ii) liberalised agricultural markets, and (iii) slightly and (iv) strongly lowered agricultural production provided probable directions of landscape change. Current species-environment relationships were derived from a statistical model and used to predict future occurrence probabilities in six major biogeographical regions in Switzerland, comprising the Jura Mountains, the Plateau, the Northern and Southern Alps, as well as the Western and Eastern Central Alps. The main results were that dry grasslands species profited from lowered agricultural production, whereas overgrowth of open areas in the liberalisation scenario might impair species occurrence. The wetland species mostly responded with decreases in their occurrence probabilities in the scenarios, due to a loss of their preferred habitat. Further analyses about factors currently influencing species occurrences confirmed anthropogenic causes such as urbanisation, abandonment of open land, and agricultural intensification. Hence, landscape planning should pay more attention to these forces in areas currently inhabited by these butterfly species to enable sustainable species persistence. In this thesis historical data were intensively used to reconstruct past developments and to make them useful for current investigations. Yet, the availability of historical data and the analyses on broader spatial scales has often limited the explanatory power of the conducted analyses. Meaningful descriptors of former habitat characteristics and abundant species distribution data are generally sparse, especially for fine scale analyses. However, this situation can be ameliorated by broadening the extent of the study site and the used grain size, as was done in this thesis by considering the whole of Switzerland with its communes. Nevertheless, current monitoring projects and data recording techniques are promising data sources that might allow more detailed analyses about effects of long-term species reactions on landscape changes in the near future. This work, however, also showed the value of historical species distribution data as for example their potential to locate still unknown species occurrences. The results might therefore contribute to further research activities that investigate current and future species distributions considering the immense richness of historical distribution data. Résumé Les paysages changent continuellement. Des farces naturelles comme des pluies violentes ou des feux peuvent avoir une influence durable sur la forme du paysage. Cependant, les changements attribués aux activités humaines ont souvent modelé les paysages plus profondément. Depuis les années 1950 surtout, les pratiques agricoles modernes ou l'expansion des surfaces d'habitat et d'infrastructure ont caractérisé le développement du paysage en Europe de l'Ouest. Ces dernières années, l'homme a commencé à réaliser que beaucoup de changements «naturels » pourraient indirectement résulter de ses propres activités. Le changement de paysage le plus apparent dont nous sommes témoins de nos jours est probablement l'immense retraite des glaciers alpins. Avec les paysages, les habitats des animaux et des plantes ont aussi été exposés à des changements vastes et quelquefois rapides, tenus pour coresponsable de la continuelle diminution de la biodiversité. Cependant, nous savons peu des effets probables de la rapidité des changements du paysage sur la persistance et la disparition des espèces. Le développement et la rapidité du changement de l'utilisation et de la couverture du sol dans les communes suisses entre les années 50 et 90 ont donc été reconstruits au moyen de 10 variables issues des recensements agricoles et résidentiels et ont été corrélés avec des changements de présence des papillons diurnes. Des analyses de groupes (Cluster analyses) ont été utilisées pour détecter des arrangements spatiaux de changements à l'échelle de la Suisse. Des communes avec des changements ou rapidités comparables ont été délimitées pour des décennies séparées et ont été placées en séquence temporelle, en rendrent une certaine dynamique du changement. Les résultats ont montré un remplacement répandu d'une agriculture extensive des pratiques intensives, une forte expansion des faubourgs urbains autour des grandes cités et des transitions vers de plus grandes surfaces d'exploitation dans les Alpes. Dans le cas des exploitations agricoles, des taux de changement croissants ont été observés jusqu'aux années 70, alors que la tendance a généralement été inversée dans les années suivantes. Par contre, la vitesse de construction des nouvelles maisons a montré des courbes positives pendant les 50 années. Les analyses sur la réaction des papillons diurnes ont montré que les espèces des prairies sèches supportaient une grande densité de bétail. Il est possible que dans ces communes beaucoup des prairies sèches aient été fertilisées et utilisées comme pâturages, qui ont une autre composition floristique. De plus, les espèces ont diminué dans les communes caractérisées par une rapide perte des fermes avec une surface cultivable supérieure à 5 ha. Les espèces des marais ont été favorisées dans des communes avec peu de surface cultivable et peu de grandes fermes, mais n'ont pas réagi aux taux de changement. Il en a donc été conclu que la rapidité des changements pourrait expliquer les disparitions d'espèces dans certains cas, mais que les variables prédictives qui expriment des états pourraient être des descripteurs plus importants. Des informations sur la distribution récente des espèces sont importantes par rapport aux mesures pour la conservation de la nature. Pour des autorités occupées à définir des zones de protection prioritaires ou à autoriser des projets de construction, ces informations sont indispensables. Les modèles de distribution spatiale d'espèces sont donc devenus des moyens de décision importants. Les méthodes statistiques courantes comme les modèles linéaires généralisés (GLM) demandent des données de présence et d'absence des espèces. Cependant, souvent seules les données de présence sont disponibles, surtout pour les animaux migrants, rares ou cryptiques comme des papillons ou des reptiles. C'est pourquoi certains modélisateurs ont choisi des absences au hasard, avec le risque d'influencer le résultat en choisissant des fausses absences. Nous avons établi plusieurs stratégies, basées sur des données de distribution historique des papillons diurnes, pour sélectionner des absences plus fiables. Les résultats ont démontré que de meilleurs modèles pouvaient être obtenus lorsque les données proviennent des périodes de temps plus longues. En plus, la performance des modèles a pu être augmentée en considérant des données de distribution à long terme d'espèces qui occupent des habitats similaires à ceux de l'espèce cible. Vu le succès de cette stratégie, elle a été utilisée pour évaluer les effets potentiels des changements de paysage futurs sur la distribution des papillons des prairies sèches et marais, deux habitats qui ont souffert de graves détériorations. Quatre scénarios spatialement explicites, décrivant (i) l'extrapolation des changements de l'utilisation de sol tels qu'observés entre 1985 et 1997, (ii) la libéralisation des marchés agricoles, et une production agricole (iii) légèrement amoindrie et (iv) fortement diminuée, ont été utilisés pour générer des directions de changement probables. Les relations actuelles entre la distribution des espèces et l'environnement ont été déterminées par le biais des modèles statistiques et ont été utilisées pour calculer des probabilités de présence selon les scénarios dans six régions biogéographiques majeures de la Suisse, comportant le Jura, le Plateau, les Alpes du Nord, du Sud, centrales orientales et centrales occidentales. Les résultats principaux ont montré que les espèces des prairies sèches pourraient profiter d'une diminution de la production agricole, mais qu'elles pourraient aussi disparaître à cause de l'embroussaillement des terres ouvertes dû à la libéralisation des marchés agricoles. La probabilité de présence des espèces de marais a décrû à cause d'une perte générale des habitats favorables. De plus, les analyses ont confirmé que des causes humaines comme l'urbanisation, l'abandon des terres ouvertes et l'intensification de l'agriculture affectent actuellement ces espèces. Ainsi ces forces devraient être mieux prises en compte lors de planifications paysagères, pour que ces papillons diurnes puissent survivre dans leurs habitats actuels. Dans ce travail de thèse, des données historiques ont été intensivement utilisées pour reconstruire des développements anciens et pour les rendre utiles à des recherches contemporaines. Cependant, la disponibilité des données historiques et les analyses à grande échelle ont souvent limité le pouvoir explicatif des analyses. Des descripteurs pertinents pour caractériser les habitats anciens et des données suffisantes sur la distribution des espèces sont généralement rares, spécialement pour des analyses à des échelles fores. Cette situation peut être améliorée en augmentant l'étendue du site d'étude et la résolution, comme il a été fait dans cette thèse en considérant toute la Suisse avec ses communes. Cependant, les récents projets de surveillance et les techniques de collecte de données sont des sources prometteuses, qui pourraient permettre des analyses plus détaillés sur les réactions à long terme des espèces aux changements de paysage dans le futur. Ce travail a aussi montré la valeur des anciennes données de distribution, par exemple leur potentiel pour aider à localiser des' présences d'espèces encore inconnues. Les résultats peuvent contribuer à des activités de recherche à venir, qui étudieraient les distributions récentes ou futures d'espèces en considérant l'immense richesse des données de distribution historiques.
Resumo:
Many studies have forecasted the possible impact of climate change on plant distribution using models based on ecological niche theory. In their basic implementation, niche-based models do not constrain predictions by dispersal limitations. Hence, most niche-based modelling studies published so far have assumed dispersal to be either unlimited or null. However, depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under- or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of "potentially suitable" and "potentially colonisable" habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MIGCLIM, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MIGCLIM implements various parameters, such as dispersal distance, increase in reproductive potential over time, barriers to dispersal or long distance dispersal. Several simulations were run for two virtual species in a study area of the western Swiss Alps, by varying dispersal distance and other parameters. Each simulation covered the hundred-year period 2001-2100 and three different IPCC-based temperature warming scenarios were considered. Our results indicate that: (i) using realistic parameter values, the future potential distributions generated using MIGCLIM can differ significantly (up to more than 95% decrease in colonized surface) from those that ignore dispersal; (ii) this divergence increases both with increasing climate warming and over longer time periods; (iii) the uncertainty associated with the warming scenario can be nearly as large as the one related to dispersal parameters; (iv) accounting for dispersal, even roughly, can importantly reduce uncertainty in projections.
Resumo:
Based on conclusions drawn from general climatic impact assessment in mountain regions, the review synthesizes results relevant to the European Alps published mainly from 1994 onward in the fields of population genetics, ecophysiology, phenology, phytogeography, modeling, paleoecology and vegetation dynamics. Other important factors of global change interacting synergistically with climatic factors are also mentioned, such as atmospheric CO2 concentration, eutrophication, ozone or changes in land-use. Topics addressed are general species distribution and populations (persistence, acclimation, genetic variability, dispersal, fragmentation, plant/animal interaction, species richness, conservation), potential response of vegetation (ecotonal shift - area, physiography - changes in the composition, structural changes), phenology, growth and productivity, and landscape. In conclusion, the European Alps appear to have a natural inertia and thus to tolerate an increase of 1-2 K of mean air temperature as far as plant species and ecosystems are concerned in general. However, the impact of land-use is very likely to negate this buffer in many areas. For a change of the order of 3 K or more, profound changes may be expected.
Resumo:
1. Identifying those areas suitable for recolonization by threatened species is essential to support efficient conservation policies. Habitat suitability models (HSM) predict species' potential distributions, but the quality of their predictions should be carefully assessed when the species-environment equilibrium assumption is violated.2. We studied the Eurasian otter Lutra lutra, whose numbers are recovering in southern Italy. To produce widely applicable results, we chose standard HSM procedures and looked for the models' capacities in predicting the suitability of a recolonization area. We used two fieldwork datasets: presence-only data, used in the Ecological Niche Factor Analyses (ENFA), and presence-absence data, used in a Generalized Linear Model (GLM). In addition to cross-validation, we independently evaluated the models with data from a recolonization event, providing presences on a previously unoccupied river.3. Three of the models successfully predicted the suitability of the recolonization area, but the GLM built with data before the recolonization disagreed with these predictions, missing the recolonized river's suitability and badly describing the otter's niche. Our results highlighted three points of relevance to modelling practices: (1) absences may prevent the models from correctly identifying areas suitable for a species spread; (2) the selection of variables may lead to randomness in the predictions; and (3) the Area Under Curve (AUC), a commonly used validation index, was not well suited to the evaluation of model quality, whereas the Boyce Index (CBI), based on presence data only, better highlighted the models' fit to the recolonization observations.4. For species with unstable spatial distributions, presence-only models may work better than presence-absence methods in making reliable predictions of suitable areas for expansion. An iterative modelling process, using new occurrences from each step of the species spread, may also help in progressively reducing errors.5. Synthesis and applications. Conservation plans depend on reliable models of the species' suitable habitats. In non-equilibrium situations, such as the case for threatened or invasive species, models could be affected negatively by the inclusion of absence data when predicting the areas of potential expansion. Presence-only methods will here provide a better basis for productive conservation management practices.