854 resultados para Spatial patterns
Resumo:
In multivariate time series analysis, the equal-time cross-correlation is a classic and computationally efficient measure for quantifying linear interrelations between data channels. When the cross-correlation coefficient is estimated using a finite amount of data points, its non-random part may be strongly contaminated by a sizable random contribution, such that no reliable conclusion can be drawn about genuine mutual interdependencies. The random correlations are determined by the signals' frequency content and the amount of data points used. Here, we introduce adjusted correlation matrices that can be employed to disentangle random from non-random contributions to each matrix element independently of the signal frequencies. Extending our previous work these matrices allow analyzing spatial patterns of genuine cross-correlation in multivariate data regardless of confounding influences. The performance is illustrated by example of model systems with known interdependence patterns. Finally, we apply the methods to electroencephalographic (EEG) data with epileptic seizure activity.
Resumo:
We studied temporal and spatial patterns of soil nitrogen (N) dynamics from 1993 to 1995 in three watersheds of Fernow Experimental Forest, W.V.: WS7 (24-year-old, untreated); WS4 (mature, untreated); and WS3 (24-year-old, treated with (NH4)2SO since 1989 at the rate of 35 kg Nha–1year–1). Net nitrification was 141, 114, and115 kg Nha–1year–1, for WS3, WS4, and WS7, respectively, essentially 100% of net N mineralization for all watersheds. Temporal (seasonal) patterns of nitrification were significantly related to soil moisture and ambient temperaturein untreated watersheds only. Spatial patterns of soil water NO3–of WS4 suggest that microenvironmental variabilitylimits rates of N processing in some areas of this N-saturated watershed, in part by ericaceous species in the herbaceous layer. Spatial patterns of soil water NO3–in treated WS3 suggest that later stages of N saturation may result inhigher concentrations with less spatial variability. Spatial variability in soil N variables was lower in treated WS3 versus untreated watersheds. Nitrogen additions have altered the response of N-processing microbes to environmental factors, becoming less sensitive to seasonal changes in soil moisture and temperature. Biotic processes responsible forregulating N dynamics may be compromised in N-saturated forest ecosystems.
Resumo:
Recent research highlights the promise of remotely-sensed aerosol optical depth (AOD) as a proxy for ground-level PM2.5. Particular interest lies in the information on spatial heterogeneity potentially provided by AOD, with important application to estimating and monitoring pollution exposure for public health purposes. Given the temporal and spatio-temporal correlations reported between AOD and PM2.5 , it is tempting to interpret the spatial patterns in AOD as reflecting patterns in PM2.5 . Here we find only limited spatial associations of AOD from three satellite retrievals with PM2.5 over the eastern U.S. at the daily and yearly levels in 2004. We then use statistical modeling to show that the patterns in monthly average AOD poorly reflect patterns in PM2.5 because of systematic, spatially-correlated error in AOD as a proxy for PM2.5 . Furthermore, when we include AOD as a predictor of monthly PM2.5 in a statistical prediction model, AOD provides little additional information to improve predictions of PM2.5 when included in a model that already accounts for land use, emission sources, meteorology and regional variability. These results suggest caution in using spatial variation in AOD to stand in for spatial variation in ground-level PM2.5 in epidemiological analyses and indicate that when PM2.5 monitoring is available, careful statistical modeling outperforms the use of AOD.
Resumo:
Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.
Resumo:
Mapping ecosystem services (ES) and their trade-offs is a key requirement for informed decision making for land use planning and management of natural resources that aim to move towards increasing the sustainability of landscapes. The negotiations of the purposes of landscapes and the services they should provide are difficult as there is an increasing number of stakeholders active at different levels with a variety of interests present on one particular landscape.Traditionally, land cover data is at the basis for mapping and spatial monitoring of ecosystem services. In light of complex landscapes it is however questionable whether land cover per se and as a spatial base unit is suitable for monitoring and management at the meso-scale. Often the characteristics of a landscape are defined by prevalence, composition and specific spatial and temporal patterns of different land cover types. The spatial delineation of shifting cultivation agriculture represents a prominent example of a land use system with its different land use intensities that requires alternative methodologies that go beyond the common remote sensing approaches of pixel-based land cover analysis due to the spatial and temporal dynamics of rotating cultivated and fallow fields.Against this background we advocate that adopting a landscape perspective to spatial planning and decision making offers new space for negotiation and collaboration, taking into account the needs of local resource users, and of the global community. For this purpose we introduce landscape mosaicsdefined as new spatial unit describing generalized land use types. Landscape mosaics have allowed us to chart different land use systems and land use intensities and permitted us to delineate changes in these land use systems based on changes of external claims on these landscapes. The underlying idea behindthe landscape mosaics is to use land cover data typically derived from remote sensing data and to analyse and classify spatial patterns of this land cover data using a moving window approach. We developed the landscape mosaics approach in tropical, forest dominated landscapesparticularly shifting cultivation areas and present examples ofour work from northern Laos, eastern Madagascarand Yunnan Province in China.
Resumo:
In land systems, equitably managing trade-offs between planetary boundaries and human development needs represents a grand challenge in sustainability oriented initiatives. Informing such initiatives requires knowledge about the nexus between land use, poverty, and environment. This paper presents results from Lao PDR, where we combined nationwide spatial data on land use types and the environmental state of landscapes with village-level poverty indicators. Our analysis reveals two general but contrasting trends. First, landscapes with paddy or permanent agriculture allow a greater number of people to live in less poverty but come at the price of a decrease in natural vegetation cover. Second, people practising extensive swidden agriculture and living in intact environments are often better off than people in degraded paddy or permanent agriculture. As poverty rates within different landscape types vary more than between landscape types, we cannot stipulate a land use–poverty–environment nexus. However, the distinct spatial patterns or configurations of these rates point to other important factors at play. Drawing on ethnicity as a proximate factor for endogenous development potentials and accessibility as a proximate factor for external influences, we further explore these linkages. Ethnicity is strongly related to poverty in all land use types almost independently of accessibility, implying that social distance outweighs geographic or physical distance. In turn, accessibility, almost a precondition for poverty alleviation, is mainly beneficial to ethnic majority groups and people living in paddy or permanent agriculture. These groups are able to translate improved accessibility into poverty alleviation. Our results show that the concurrence of external influences with local—highly contextual—development potentials is key to shaping outcomes of the land use–poverty–environment nexus. By addressing such leverage points, these findings help guide more effective development interventions. At the same time, they point to the need in land change science to better integrate the understanding of place-based land indicators with process-based drivers of land use change.
Resumo:
Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size‐asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual‐based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size‐asymmetric and size‐symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size‐asymmetric competition, not to variation in local density.
Resumo:
The first data set contains the mean and cofficient of variation (standard deviation divided by mean) of a multi-frequency indicator I derived from ER60 acoustic information collected at five frequencies (18, 38, 70, 120, and 200 kHz) in the Bay of Biscay in May of the years 2006, 2008, 2009 and 2010 (Pelgas surveys). The multi-frequency indicator was first calculated per voxel (20 m long × 5 m deep sampling unit) and then averaged on a spatial grid (approx. 20 nm × 20 nm) for five 5-m depth layers in the surface waters (10-15m, 15-20m, 20-25m, 25-30m below sea surface); there are missing values in particular in the shallowest layer. The second data set provides for each grid cell and depth layer the proportion of voxels for which the multi-frequency indicator I was indicative of a certain group of organisms. For this the following interpretation was used: I < 0.39 swim bladder fish or large gas bubbles, I = 0.39-0.58 small resonant bubbles present in gas bearing organisms such as larval fish and phytoplankton, I = 0.7-0.8 fluidlike zooplankton such as copepods and euphausiids, and I > 0.8 mackerel. These proportions can be interpreted as a relative abundance index for each of the four organism groups.
Resumo:
Lacunarity as a means of quantifying textural properties of spatial distributions suggests a classification into three main classes of the most abundant soils that cover 92% of Europe. Soils with a well-defined self-similar structure of the linear class are related to widespread spatial patterns that are nondominant but ubiquitous at continental scale. Fractal techniques have been increasingly and successfully applied to identify and describe spatial patterns in natural sciences. However, objects with the same fractal dimension can show very different optical properties because of their spatial arrangement. This work focuses primary attention on the geometrical structure of the geographical patterns of soils in Europe. We made use of the European Soil Database to estimate lacunarity indexes of the most abundant soils that cover 92% of the surface of Europe and investigated textural properties of their spatial distribution. We observed three main classes corresponding to three different patterns that displayed the graphs of lacunarity functions, that is, linear, convex, and mixed. They correspond respectively to homogeneous or self-similar, heterogeneous or clustered and those in which behavior can change at different ranges of scales. Finally, we discuss the pedological implications of that classification.
Resumo:
There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at province and department level in Ecuador and Peru, respectively.
Resumo:
An understanding of spatial patterns of plant species diversity and the factors that drive those patterns is critical for the development of appropriate biodiversity management in forest ecosystems. We studied the spatial organization of plants species in human- modified and managed oak forests (primarily, Quercus faginea) in the Central Pre- Pyrenees, Spain. To test whether plant community assemblages varied non-randomly across the spatial scales, we used multiplicative diversity partitioning based on a nested hierarchical design of three increasingly coarser spatial scales (transect, stand, region). To quantify the importance of the structural, spatial, and topographical characteristics of stands in patterning plant species assemblages and identify the determinants of plant diversity patterns, we used canonical ordination. We observed a high contribution of ˟-diversity to total -diversity and found ˟-diversity to be higher and ˞-diversity to be lower than expected by random distributions of individuals at different spatial scales. Results, however, partly depended on the weighting of rare and abundant species. Variables expressing the historical management intensities of the stand such as mean stand age, the abundance of the dominant tree species (Q. faginea), age structure of the stand, and stand size were the main factors that explained the compositional variation in plant communities. The results indicate that (1) the structural, spatial, and topographical characteristics of the forest stands have the greatest effect on diversity patterns, (2) forests in landscapes that have different land use histories are environmentally heterogeneous and, therefore, can experience high levels of compositional differentiation, even at local scales (e.g., within the same stand). Maintaining habitat heterogeneity at multiple spatial scales should be considered in the development of management plans for enhancing plant diversity and related functions in human-altered forests
Resumo:
A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.
Resumo:
High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.
Resumo:
This paper develops an Internet geographical information system (GIS) and spatial model application that provides socio-economic information and exploratory spatial data analysis for local government authorities (LGAs) in Queensland, Australia. The application aims to improve the means by which large quantities of data may be analysed, manipulated and displayed in order to highlight trends and patterns as well as provide performance benchmarking that is readily understandable and easily accessible for decision-makers. Measures of attribute similarity and spatial proximity are combined in a clustering model with a spatial autocorrelation index for exploratory spatial data analysis to support the identification of spatial patterns of change. Analysis of socio-economic changes in Queensland is presented. The results demonstrate the usefulness and potential appeal of the Internet GIS applications as a tool to inform the process of regional analysis, planning and policy.