989 resultados para Spatial econometrics
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.
Resumo:
Systematic studies that evaluate the quality of decision-making processes are relatively rare. Using the literature on decision quality, this research develops a framework to assess the quality of decision-making processes for resolving boundary conflicts in the Philippines. The evaluation framework breaks down the decision-making process into three components (the decision procedure, the decision method, and the decision unit) and is applied to two ex-post (one resolved and one unresolved) and one ex-ante cases. The evaluation results from the resolved and the unresolved cases show that the choice of decision method plays a minor role in resolving boundary conflicts whereas the choice of decision procedure is more influential. In the end, a decision unit can choose a simple method to resolve the conflict. The ex-ante case presents a follow-up intended to resolve the unresolved case for a changing decision-making process in which the associated decision unit plans to apply the spatial multi criteria evaluation (SMCE) tool as a decision method. The evaluation results from the ex-ante case confirm that the SMCE has the potential to enhance the decision quality because: a) it provides high quality as a decision method in this changing process, and b) the weaknesses associated with the decision unit and the decision procedure of the unresolved case were found to be eliminated in this process.
Resumo:
This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.
Resumo:
Background: Understanding the spatial distribution of suicide can inform the planning, implementation and evaluation of suicide prevention activity. This study explored spatial clusters of suicide in Australia, and investigated likely socio-demographic determinants of these clusters. Methods: National suicide and population data at a statistical local area (SLA) level were obtained from the Australian Bureau of Statistics for the period of 1999 to 2003. Standardised mortality ratios (SMR) were calculated at the SLA level, and Geographic Information System (GIS) techniques were applied to investigate the geographical distribution of suicides and detect clusters of high risk in Australia. Results: Male suicide incidence was relatively high in the northeast of Australia, and parts of the east coast, central and southeast inland, compared with the national average. Among the total male population and males aged 15 to 34, Mornington Shire had the whole or a part of primary high risk cluster for suicide, followed by the Bathurst-Melville area, one of the secondary clusters in the north coastal area of the Northern Territory. Other secondary clusters changed with the selection of cluster radius and age group. For males aged 35 to 54 years, only one cluster in the east of the country was identified. There was only one significant female suicide cluster near Melbourne while other SLAs had very few female suicide cases and were not identified as clusters. Male suicide clusters had a higher proportion of Indigenous population and lower median socio-economic index for area (SEIFA) than the national average, but their shapes changed with selection of maximum cluster radii setting. Conclusion: This study found high suicide risk clusters at the SLA level in Australia, which appeared to be associated with lower median socio-economic status and higher proportion of Indigenous population. Future suicide prevention programs should focus on these high risk areas.
Resumo:
Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75NTR, CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75NTR was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75NTR, CD24 antigens and ALDH activity (ALDEFLUOR® assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells.
Resumo:
Background: A range of health outcomes at a population level are related to differences in levels of social disadvantage. Understanding the impact of any such differences in palliative care is important. The aim of this study was to assess, by level of socio-economic disadvantage, referral patterns to specialist palliative care and proximity to inpatient services. Methods: All inpatient and community palliative care services nationally were geocoded (using postcode) to one nationally standardised measure of socio-economic deprivation – Socio-Economic Index for Areas (SEIFA; 2006 census data). Referral to palliative care services and characteristics of referrals were described through data collected routinely at clinical encounters. Inpatient location was measured from each person’s home postcode, and stratified by socio-economic disadvantage. Results: This study covered July – December 2009 with data from 10,064 patients. People from the highest SEIFA group (least disadvantaged) were significantly less likely to be referred to a specialist palliative care service, likely to be referred closer to death and to have more episodes of inpatient care for longer time. Physical proximity of a person’s home to inpatient care showed a gradient with increasing distance by decreasing levels of socio-economic advantage. Conclusion: These data suggest that a simple relationship of low socioeconomic status and poor access to a referral-based specialty such as palliative care does not exist. Different patterns of referral and hence different patterns of care emerge.
Resumo:
The use of public space by children and young people is a contentious issue in a number of developed and developing countries and a range of measures are frequently deployed to control the public space which usually deny the rights of children and young people to claim the space for their use. Child and youth curfews, oppressive camera surveillance and the unwarranted attentions of police and private security personnel as control measures in public space undermine attempts to secure greater participation by children and young people in constructing positive strategies to address concerns that impact on them and others in a local area. Evidence from research in Scotland undertaken by Article 12 (2000) suggests that young people felt strongly that they did not count in local community matters and decision making and the imposition on them of a curfew by the adult world of the local area created resentment both at the harshness of the measure and disappointment at an opportunity lost to be consulted and involved in dealing with perceived problems of the locality. This is an important cluster of linked issues as Brown (1998:116) argues that young people are ‘selectively constructed as “problem” and “other” with their concerns marginalised, their lifestyles problematised and their voices subdued’, and this flows into their use of public space as their claims to its use as an aspect of social citizenship are usually cast as inferior or rejected as they ‘stand outside the formal polity’ as ‘non persons’. This has major implications for the ways in which young people view their position in a community as many report a feeling of not being wanted, valued or tolerated. The ‘youth question’ according to Davis (1990) acts as a form of ‘screen’ on which observers and analysts project hopes and fears about the state of society, while in the view of Loader (1996:89) the ‘question of young people’ sits within a discourse comprising two elements, the one being youth, particularly young males, as the ‘harbinger of often unwelcome social change and threat’ and the other element ‘constructs young people as vulnerable’. This discourse of threat is further exemplified in the separation of children from teenagers as Valentine (1996) suggests, the treatment of younger children using public space is often dramatically different to that of older children and the most feared stage of all, 'youth'
Resumo:
The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:00–16:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.
Resumo:
It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.
Resumo:
This paper reviews the growing influence of human rights issues on land rights, administration, management and tenure. In the last few decades, attention focussed on integrating economic and environmental considerations to achieve sustainable land use. The World Trade Organisation began in 1995. As a condition of membership, nations undertook legislative programmes aimed at reducing price distortions and barriers to international trade. Reducing trade barriers has direct effects on agricultural production as a major land use. Similarly, as signatories to the 1992 Rio Declaration, nations undertook caring for and reporting on the state of the environment. However, quality of life is also an issue in deciding what is sustainable development. The Universal Declaration of Human Rights, proclaimed in 1948, provided a framework for a series of international human rights conventions. These conventions now influence national legislative programmes. The purpose of this paper is to review some of the implications of human rights on rights in land and the production and use of spatial information.
Resumo:
Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.
Resumo:
The purpose of this paper is to identify goal conflicts – both actual and potential – between climate and social policies in government strategies in response to the growing significance of climate change as a socioecological issue (IPCC 2007). Both social and climate policies are political responses to long-term societal trends related to capitalist development, industrialisation, and urbanisation (Koch, 2012). Both modify these processes through regulation, fiscal transfers and other measures, thereby affecting conditions for the other. This means that there are fields of tensions and synergies between social policy and climate change policy. Exploring these tensions and synergies is an increasingly important task for navigating genuinely sustainable development. Gough et al (2008) highlight three potential synergies between social and climate change policies: First, income redistribution – a traditional concern of social policy – can facilitate use of and enhance efficiency of carbon pricing. A second area of synergy is housing, transport, urban policies and community development, which all have potential to crucially contribute towards reducing carbon emissions. Finally, climate change mitigation will require substantial and rapid shifts in producer and consumer behaviour. Land use planning policy is a critical bridge between climate change and social policy that provides a means to explore the tensions and synergies that are evolving within this context. This paper will focus on spatial planning as an opportunity to develop strategies to adapt to climate change, and reviews the challenges of such change. Land use and spatial planning involve the allocation of land and the design and control of spatial patterns. Spatial planning is identified as being one of the most effective means of adapting settlements in response to climate change (Hurlimann and March, 2012). It provides the instrumental framework for adaptation (Meyer, et al., 2010) and operates as both a mechanism to achieve adaptation and a forum to negotiate priorities surrounding adaptation (Davoudi, et al., 2009). The acknowledged role of spatial planning in adaptation however has not translated into comparably significant consideration in planning literature (Davoudi, et al., 2009; Hurlimann and March, 2012). The discourse on adaptation specifically through spatial planning is described as ‘missing’ and ‘subordinate’ in national adaptation plans (Greiving and Fleischhauer, 2012),‘underrepresented’ (Roggema, et al., 2012)and ‘limited and disparate’ in planning literature (Davoudi, et al., 2009). Hurlimann and March (2012) suggest this may be due to limited experiences of adaptation in developed nations while Roggema et al. (2012) and Crane and Landis (2010) suggest it is because climate change is a wicked problem involving an unfamiliar problem, various frames of understanding and uncertain solutions. The potential for goal conflicts within this policy forum seem to outweigh the synergies. Yet, spatial planning will be a critical policy tool in the future to both protect and adapt communities to climate change.
Resumo:
Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.