853 resultados para Spatial Scale


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The usual interpretation of a flux transfer event (FTE) at the magnetopause, in terms of time-dependent and possibly patchy reconnection, demands that it generate an ionospheric signature. Recent ground-based observations have revealed that auroral transients in the cusp/cleft region have all the characteristics required of FTE effects. However, signatures in the major available dataset, namely that from low-altitude polar-orbiting satellites, have not yet been identified. In this paper, we consider a cusp pass of the DE-2 spacecraft during strongly southward IMF. The particle detectors show magnetosheath ion injection signatures. However, the satellite motion and convection are opposed, and we discuss how the observed falling energy dispersion of the precipitating ions can have arisen from a static, moving or growing source. The spatial scale of the source is typical of an FTE. A simple model of the ionospheric signature of an FTE reproduces the observed electric and magnetic field perturbations. Precipitating electrons of peak energy ∼100eV are found to lie on the predicted boundary of the newly-opened tube, very similar to those found on the edges of FTEs at the magnetopause. The injected ions are within this boundary and their dispersion is consistent with its growth as reconnection proceeds. The reconnection potential and the potential of the induced ionospheric motion are found to be the same (≃25kV). The scanning imager on DE-1 shows a localised transient auroral feature around DE-2 at this time, similar to the recent optical/radar observations of FTEs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myrmecophyte plants house ants in domatia in exchange for protection from herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: i) domatia nest-sites are a limiting resource and ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest-sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilising multispecies systems to further our understanding of mutualism biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Why some organisms become invasive when introduced into novel regions while others fail to even establish is a fundamental question in ecology. Barriers to success are expected to filter species at each stage along the invasion pathway. No study to date, however, has investigated how species traits associate with success from introduction to spread at a large spatial scale in any group. Using the largest data set of mammalian introductions at the global scale and recently developed phylogenetic comparative methods, we show that human-mediated introductions considerably bias which species have the opportunity to become invasive, as highly productive mammals with longer reproductive lifespans are far more likely to be introduced. Subsequently, greater reproductive output and higher introduction effort are associated with success at both the establishment and spread stages. High productivity thus supports population growth and invasion success, with barriers at each invasion stage filtering species with progressively greater fecundity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P>1. The use of indicators to identify areas of conservation importance has been challenged on several grounds, but nonetheless retains appeal as no more parsimonious approach exists. Among the many variants, two indicator strategies stand out: the use of indicator species and the use of metrics of landscape structure. While the first has been thoroughly studied, the same cannot be said about the latter. We aimed to contrast the relative efficacy of species-based and landscape-based indicators by: (i) comparing their ability to reflect changes in community integrity at regional and landscape spatial scales, (ii) assessing their sensitivity to changes in data resolution, and (iii) quantifying the degree to which indicators that are generated in one landscape or at one spatial scale can be transferred to additional landscapes or scales. 2. We used data from more than 7000 bird captures in 65 sites from six 10 000-ha landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. Indicator species and landscape-based indicators were tested in terms of how effective they were in reflecting changes in community integrity, defined as deviations in bird community composition from control areas. 3. At the regional scale, indicator species provided more robust depictions of community integrity than landscape-based indicators. At the landscape scale, however, landscape-based indicators performed more effectively, more consistently and were also more transferable among landscapes. The effectiveness of high resolution landscape-based indicators was reduced by just 12% when these were used to explain patterns of community integrity in independent data sets. By contrast, the effectiveness of species-based indicators was reduced by 33%. 4. Synthesis and applications. The use of indicator species proved to be effective; however their results were variable and sensitive to changes in scale and resolution, and their application requires extensive and time-consuming field work. Landscape-based indicators were not only effective but were also much less context-dependent. The use of landscape-based indicators may allow the rapid identification of priority areas for conservation and restoration, and indicate which restoration strategies should be pursued, using remotely sensed imagery. We suggest that landscape-based indicators might often be a better, simpler, and cheaper strategy for informing decisions in conservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The degree to which habitat fragmentation affects bird incidence is species specific and may depend on varying spatial scales. Selecting the correct scale of measurement is essential to appropriately assess the effects of habitat fragmentation on bird occurrence. Our objective was to determine which spatial scale of landscape measurement best describes the incidence of three bird species (Pyriglena leucoptera, Xiphorhynchus fuscus and Chiroxiphia caudata) in the fragmented Brazilian Atlantic forest and test if multi-scalar models perform better than single-scalar ones. Bird incidence was assessed in 80 forest fragments. The surrounding landscape structure was described with four indices measured at four spatial scales (400-, 600-, 800- and 1,000-m buffers around the sample points). The explanatory power of each scale in predicting bird incidence was assessed using logistic regression, bootstrapped with 1,000 repetitions. The best results varied between species (1,000-m radius for P. leucoptera; 800-m for X. fuscus and 600-m for C. caudata), probably due to their distinct feeding habits and foraging strategies. Multi-scale models always resulted in better predictions than single-scale models, suggesting that different aspects of the landscape structure are related to different ecological processes influencing bird incidence. In particular, our results suggest that local extinction and (re)colonisation processes might simultaneously act at different scales. Thus, single-scale models may not be good enough to properly describe complex pattern-process relationships. Selecting variables at multiple ecologically relevant scales is a reasonable procedure to optimise the accuracy of species incidence models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to examine the benthic fauna in a marginal pond lateral to the Paranapanema River and to identify the main controlling factors of its distribution. Considering the small size of the lacustrine ecosystem, we expected that seasonal variations of the benthic community attributes are more important than spatial variations; Methods: Two samplings, one in March and another in August, were carried out at nine sites in the pond. Sediment samples were obtained through a Van Veen grab for invertebrate sorting, granulometric analysis, and for quantification of organic matter in sediment. Other abiotic factors were measured, such as water transparency, dissolved oxygen, pH, electric conductivity, temperature, and depth of sediment sampling sites. Regarding the comparative analysis at spatial scale, no significant variations in density of the benthic invertebrate community were found. Results: In relation to the studied abiotic factors, only depth presented significant differences among sampling sites; All the measured environmental parameters presented significant differences among sampling months, except depth and the physical and chemical characteristics of the sediment. The abundance of Chaoboridae and Chironomidae was the unique attribute with a significant difference in comparing the two months. A higher abundance of taxa occurred in August, especially for Oligochaeta, Nematoda, Chaoboridae, and Chironomidae; Conclusions: Because of the low structural complexity of the studied pond, we concluded that the changes in benthic macroinvertebrate community attributes were mainly due to seasonal effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The diversity of tropical forest plant phenology has called the attention of researchers for a long time. We continue investigating the factors that drive phenological diversity on a wide scale, but we are unaware of the variation of plant reproductive phenology at a fine spatial scale despite the high spatial variation in species composition and abundance in tropical rainforests. We addressed fine scale variability by investigating the reproductive phenology of three contiguous vegetations across the Atlantic rainforest coastal plain in Southeastern Brazil. We asked whether the vegetations differed in composition and abundance of species, the microenvironmental conditions and the reproductive phenology, and how their phenology is related to regional and local microenvironmental factors. The study was conducted from September 2007 to August 2009 at three contiguous sites: (1) seashore dominated by scrub vegetation, (2) intermediary covered by restinga forest and (3) foothills covered by restinga pre-montane transitional forest. We conducted the microenvironmental, plant and phenological survey within 30 transects of 25 mx4 m (10 per site). We detected significant differences in floristic, microenvironment and reproductive phenology among the three vegetations. The microenvironment determines the spatial diversity observed in the structure and composition of the flora, which in turn determines the distinctive flowering and fruiting peaks of each vegetation (phenological diversity). There was an exchange of species providing flowers and fruits across the vegetation complex. We conclude that plant reproductive patterns as described in most phenological studies (without concern about the microenvironmental variation) may conceal the fine scale temporal phenological diversity of highly diverse tropical vegetation. This phenological diversity should be taken into account when generating sensor-derived phenologies and when trying to understand tropical vegetation responses to environmental changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a geostatistical method, known as factorial kriging analysis, which is well suited for analyzing multivariate spatial information. The method involves multivariate variogram modeling, principal component analysis, and cokriging. It uses several separate correlation structures, each corresponding to a specific spatial scale, and yields a set of regionalized factors summarizing the main features of the data for each spatial scale. This method is applied to an area of high manganese-ore mining activity in Amapa State, North Brazil. Two scales of spatial variation (0.33 and 2.0 km) are identified and interpreted. The results indicate that, for the short-range structure, manganese, arsenic, iron, and cadmium are associated with human activities due to the mining work, while for the long-range structure, the high aluminum, selenium, copper, and lead concentrations, seem to be related to the natural environment. At each scale, the correlation structure is analyzed, and regionalized factors are estimated by cokriging and then mapped.