977 resultados para Soilborne pathogen
Resumo:
P>Scedosporium apiospermum is an emerging agent of opportunistic mycoses in humans. Previously, we showed that mycelia of S. apiospermum secreted metallopeptidases which were directly linked to the destruction of key host proteins. In this study, we analysed the effect of metallopeptidase inhibitors on S. apiospermum development. As germination of inhaled conidia is a crucial event in the infectious process of S. apiospermum, we studied the morphological transformation induced by the incubation of conidia in Sabouraud-dextrose medium at 37 degrees C. After 6 h, some conidia presented a small projection resembling a germ-tube. A significant increase, around sixfold, in the germ-tube length was found after 12 h, and hyphae were exclusively observed after 24 h. Three distinct metallopeptidase inhibitors were able to arrest the transformation of conidia into hyphae in different ways; for instance, 1,10-phenanthroline (PHEN) completely blocked this process at 10 mu mol l-1, while ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis (beta-aminoethyl ether; EGTA) only partially inhibited the differentiation at up to 10 mmol l-1. EGTA did not promote any significant reduction in the conidial growth, while PHEN and EDTA, both at 10 mmol l-1, inhibited the proliferation around 100% and 65%, respectively. The secretion of polypeptides into the extracellular environment and the metallopeptidase activity secreted by mycelia were completely inhibited by PHEN. These findings suggest that metallo-type enzymes could be potential targets for future therapeutic interventions against S. apiospermum.
Resumo:
Nitrogen uptake and metabolism are essential to microbial growth. Gat1 belongs to a conserved family of zinc finger containing transcriptional regulators known as GATA-factors. These factors activate the transcription of Nitrogen Catabolite Repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. Cryptococcus neoformans GAT1 is an ortholog to the Aspergillus nidulans AreA and Candida albicans GAD genes. In an attempt to define the function of this transcriptional regulator in C. neoformans, we generated null mutants (gat1 Delta) of this gene. The gat 1 mutant exhibited impaired growth on all amino acids tested as sole nitrogen sources, with the exception of arginine and proline. Furthermore, the gat1 mutant did not display resistance to rapamycin, an immunosuppressant drug that transiently mimics a low-quality nitrogen source. Gal is not required for C. neoformans survival during macrophage infection or for virulence in a mouse model of cryptococcosis. Microarray analysis allowed the identification of target genes that are regulated by Gat1 in the presence of proline, a poor and non-repressing nitrogen source. Genes involved in ergosterol biosynthesis, iron uptake, cell wall organization and capsule biosynthesis, in addition to NCR-sensitive genes, are Gat1-regulated in C. neoformans. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
XACb0070 is an uncharacterized protein coded by the two large plasmids isolated from Xanthomonas axonopodis pv. cirri, the agent of citrus canker and responsible for important economical losses in citrus world production. XACb0070 presents sequence homology only with other hypothetical proteins belonging to plant pathogens, none of which have their structure determined. The NMR-derived solution structure reveals this protein is a homodimer in which each monomer presents two domains with different structural and dynamic properties: a folded N-terminal domain with beta alpha alpha topology which mediates dimerization and a long disordered C-terminal tail. The folded domain shows high structural similarity to the ribbon-helix-helix transcriptional repressors, a family of DNA-binding proteins of conserved 3D fold but low sequence homology: indeed XACb0070 binds DNA. Primary sequence and fold comparison of XACb0070 with other proteins of the ribbon-helix-helix family together with examination of the genes in the vicinity of xacb0070 suggest the protein might be the component of a toxin-antitoxin system. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
Based on the genetic analysis of the phytopathogen Xylella fastidiosa genome, five media with defined composition were developed and the growth abilities of this fastidious prokaryote were evaluated in liquid media and on solid plates. All media had a common salt composition and included the same amounts of glucose and vitamins but differed in their amino acid content. XDM1 medium contained amino acids threonine, serine, glycine, alanine, aspartic acid and glutamic acid, for which complete degradation pathways occur in X fastidiosa; XDM2 included serine and methionine, amino acids for which biosynthetic enzymes are absent, plus asparagine and glutamine, which are abundant in the xylem sap; XDM3 had the same composition as XDM2 but with asparagine replaced by aspartic acid due to the presence of complete degradation pathway for aspartic acid; XDM4 was a minimal medium with glutamine as a sole nitrogen source; XDM5 had the same composition as XDM4, plus methionine. The liquid and solidified XDM2 and XDM3 media were the most effective for the growth of X. fastidiosa. This work opens the opportunity for the in silico design of bacterial defined media once their genome is sequenced. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A preservação de fungos fitopatogênicos por longos períodos de tempo é importante para que pesquisas possam ser realizadas a qualquer momento. Os fungos habitantes do solo são organismos que podem produzir estruturas de resistência em face de situações adversas, tais como ausência de hospedeiros e ou condições climáticas desfavoráveis para a sua sobrevivência. O objetivo deste trabalho foi desenvolver metodologias de preservação de estruturas de resistência para os fungos Fusarium oxysporum f.sp. lycopersici raça 2, Macrophomina phaseolina, Rhizoctonia solani AG4 HGI, Sclerotium rolfsii, Sclerotinia sclerotiorum e Verticillium dahliae. O delineamento foi inteiramente casualizado, com um método de produção de estruturas para cada fungo, submetido a três tratamentos [temperatura ambiente de laboratório (28±2ºC), de geladeira (5ºC) e de freezer (-20ºC)] e com dois frascos por temperatura. Mensalmente, e por um período de um ano, a sobrevivência e o vigor das colônias de cada patógeno foram avaliadas em meios de cultura específicos. Testes de patogenicidade foram realizados após um ano de preservação, com as estruturas que sobreviveram aos melhores tratamentos (temperatura) para todos os fungos. As melhores temperaturas (tratamentos) para preservar os fungos foram: a) F. oxysporum f.sp. lycopersici em temperatura de refrigeração e de freezer (5,2 e 2,9 x 10³ufc.g-1 de talco, respectivamente); b) M. phaseolina em temperatura de refrigeração [100% de sobrevivência (S) e índice 3 de vigor (V)] e S. rolfsii em temperatura ambiente (74,4% S e 1 V) e c) S. sclerotiorum e V. dahliae, ambos em temperatura de freezer (100% S e 3 V). Após um ano de preservação, somente V. dahliae perdeu a patogenicidade na metodologia desenvolvida.
Resumo:
Os fungos fitopatogênicos habitantes do solo podem sobreviver por vários anos nesse ambiente por meio de estruturas de resistência, causando perdas em muitas culturas, por vezes, inviabilizando o pleno aproveitamento de vastas áreas agrícolas. O uso de materiais orgânicos no solo consorciado com a técnica de solarização propicia a retenção de compostos voláteis fungitóxicos emanados da rápida degradação dos materiais e que são letais a vários fitopatógenos. O objetivo deste experimento foi à prospecção de novos materiais orgânicos que produzissem voláteis fungitóxicos capazes de controlar fungos fitopatogênicos habitantes do solo, em condições de associação com a simulação da técnica de solarização (microcosmo). Portanto, o presente trabalho consistiu de seis tratamentos (Solarizado; Solarizado+Brócolos; Solarizado+Eucalipto; Solarizado+Mamona; Solarizado+Mandioca e Laboratório) e cinco períodos (0, 7, 14, 21 e 28 dias) para avaliar a sobrevivência de quatro fungos de solo (Fusarium oxysporum f. sp. lycopersici Raça 2; Macrophomina phaseolina; Rhizoctonia solani AG-4 HGI e Sclerotium rolfsii). em cada uma das duas câmaras de vidro (microcosmo) por dia avaliado continha uma bolsa de náilon contendo as estruturas de resistência de cada fitopatógeno. Estruturas dos fitopatógenos foram mantidas também em condições de laboratório como referencial de controle. Todos os materiais quando associados à simulação da solarização propiciaram o controle de todos os fitopatógenos estudados, entretanto, foi observado variação no controle dos fungos. O tratamento que apenas simulou a solarização não controlou nenhum fitopatógeno.
Resumo:
Fourteen polymorphic microsatellite DNA markers derived from the draft genome sequence of Rhizoctonia solani anastomosis group 3 (AG-3), strain Rhs 1AP, were designed and characterized from the potato-infecting soil fungus R. solani AG-3. All loci were polymorphic in two field populations collected from Solanum tuberosum and S. phureja in the Colombian Andes. The total number of alleles per locus ranged from two to seven, while gene diversity (expected heterozygosity) varied from 0.11 to 0.81. Considering the variable levels of genetic diversity observed, these markers should be useful for population genetic analyses of this important dikaryotic fungal pathogen on a global scale.
Resumo:
Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P <= 0.001) were consistent with a relatively high level of differentiation among populations overall; however, pairwise comparisons gave nonsignificant R(ST) values, consistent with contemporary gene flow among five of the populations. Four of these populations were located along the Yangtze River tributary network. Gene flow followed an isolation-by-distance model consistent with restricted long-distance migration. Historical migration rates were reconstructed and yielded values that explained the current levels of population subdivision. Except for one population which appeared to be strictly clonal, all populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction. One population had a strictly recombining structure (all loci were in Hardy-Weinberg equilibrium) but the remaining populations from China and the one from India exhibited varying degrees of sexual reproduction. Six populations showed significant F(IS) values consistent with inbreeding.
Resumo:
Ten polymorphic microsatellite loci were isolated and characterized from the rice- and maize-infecting Basidiomycete fungus Rhizoctonia solani anastomosis group AG-1 IA. All loci were polymorphic in two populations from Louisiana in USA and Venezuela. The total number of alleles per locus ranged from four to eight. All 10 loci were also useful for genotyping soybean-infecting R. solani AG-1 isolates from Brazil and USA. One locus, TC06, amplified across two other AG groups representing different species, showing species-specific repeat length polymorphism. This marker suite will be used to determine the global population structure of this important pathogenic fungus.
Resumo:
O fungo Sclerotium rolfsii causa grandes perdas em algumas culturas econômicas. Por produzir estruturas de resistência (escleródios), este fungo é de difícil controle. Há escassez de novos ingredientes ativos eficientes para o controle deste patógeno. Assim, o objetivo do presente trabalho foi verificar se existe atividade fungitóxica na planta Momordica charantia (melão-de-sãocaetano), com potencial futuro para ser estudado no controle de S. rolfsii. Para isso, dois ensaios foram realizados, um in vitro (laboratório) e outro in vivo (câmara de crescimento). em in vitro, escleródios do patógeno ficaram em contato com extratos hidroetanólico e aquoso de folhas e ramos de M. charantia e sem extrato por 7, 14, 21 e 28 dias. A sobrevivência dos escleródios foi avaliada em meio de cultura específico, após cada tempo. em in vivo, testou-se a ação dos mesmos extratos de maneira preventiva e curativa (aplicação aos 6 e 3 dias antes do plantio; no dia do plantio; e aos 3 e 6 dias após o plantio) e no tratamento de semente, no patossistema feijoeiro cv. Carioquinha versus S. rolfsii. A eficiência da ação dos extratos foi avaliada por meio da severidade da doença. Os extratos hidroetanólico e aquoso, in vitro, de forma semelhante, controlaram 100% os escleródios, num período de 0 a 7 dias. No ensaio in vivo, o extrato hidroetanólico, aplicado tanto em 6 ou 3 dias, antes do plantio, de forma preventiva, diminuiu a severidade da doença em 74%. Há atividade fungitóxica na parte aérea da planta de melão-de-são-caetano, com potencial futuro de estudo para controlar S. rolfsii, preferencialmente, de maneira preventiva.
Resumo:
The Atlantic Rainforest is a Brazilian ecosystem that is being rapidly being destroyed, along with the abiotic and biotic factors present in it. Among the biotic factors, the fungi are found in the soil which, besides being of major importance in terms of ecological niches, also have broad and significant applications in biotechnology. In order to assess the biodiversity of these microorganisms in this type of ecosystem, the Banhado Grande region was chosen at the Jureia-Itatins Ecology Station, in the state of São Paulo, Brazil. Within this region, two areas were delimited for study, one covered with natural (primary) vegetation and the other containing vegetation that regenerated following the planting of rice crops, referred to here as secondary. Collection of compound soil samples were taken (depth 0-15 cm) over a period of two and a half years, with the litter first being removed, during dry/cold and humid/hot periods. After sifting the samples, they were appropriately processed using the serial dilution technique to isolate the fungi from the soil. Six different culture media were used, having pHs of 4.5, 7.0 and 9.0. Altogether, 1,211 strains were isolated, divided into the following groups: Hyphomycetes, the most abundant followed by Ascomycetes, Zygomycetes, Coelomycetes, and Oomycetes. From these, 112 species were identified, 8 down to the genus level, and those that did not produce conidia were grouped as Mycelia sterilia. Among the strains, 67 were cellulolytic, 32 originated solely in soil under natural vegetation, and 26 originated solely in soil under secondary vegetation.
Resumo:
The habitat of the mycelial saprobic form of Paracoccidio ides brasiliensis, which produces the infectious propagula, has not been determined and has proven difficult for mycologists to describe. The fungus has been rarely isolated from the environment, the disease has a prolonged latency period and no outbreaks have been reported. These facts have precluded the adoption of preventive measures to avoid infection. The confirmation of natural infections in nine-banded armadillos (Dasypus novemcinctus) with P. brasiliensis, in high frequency and wide geographic distribution, has opened new avenues for the study and understanding of its ecology. Armadillos belong to the order Xenarthra, which has existed in South America ever since the Paleocene Era (65 million years ago), when the South American subcontinent was still a detached land, before the consolidation of what is now known as the American continent. on the other hand, strong molecular evidence suggests that P. brasiliensis and other dimorphic pathogenic fungi - such as Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum - belong to the family Onygenaceae sensu Into (order Onygenales, Ascomycota), which appeared around 150 million years ago.P. brasiliensis ecology and relation to its human host are probably linked to the fungal evolutionary past, especially its long coexistence with and adaptation to animal hosts other than Homo sapiens, of earlier origin. Instead of being a blind alley, the meaning of parasitism for dimorphic pathogenic fungi should be considered as an open two-way avenue, in which the fungus may return to the environment, therefore contributing to preserve its teleomorphic (sexual) and anamorphic (asexual) forms in a defined and protected natural habitat. (c) 2006 Elsevier B.V. All rights reserved.