989 resultados para Soil vapor extraction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cambisols are the major soil type in Portugal. The yield of annual crops in these soils is generally poor, and the situation is aggravated in wet winters. In the south of Portugal, manganese toxicity has been identified as the major cause of poor growth and leaching as the main reason for the negative effect of rainfall observed in Cambisols derived from granite Manganese toxicity also appears to be present in the Cambisols in other regions of Portugal. Manganese toxicity is cross-related to the magnesium concentration, either in the soil solution or in plant shoots. Therefore soil amendment using dolomitic limestone is needed to overcome the problem. Current soil test methods are unable to predict the level of Mn toxicity. However, new approach using the extraction of soil solution is proposed, although further work is needed to fully implement the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper characterizes humic substances (HS) extracted from soil samples collected in the Rio Negro basin in the state of Amazonas, Brazil, particularly investigating their reduction capabilities towards Hg(II) in order to elucidate potential mercury cycling/volatilization in this environment. For this reason, a multimethod approach was used, consisting of both instrumental methods (elemental analysis, EPR, solid-state NMR, FIA combined with cold-vapor AAS of Hg(0)) and statistical methods such as principal component analysis (PCA) and a central composite factorial planning method. The HS under study were divided into groups, complexing and reducing ones, owing to different distribution of their functionalities. The main functionalities (cor)related with reduction of Hg(II) were phenolic, carboxylic and amide groups, while the groups related with complexation of Hg(II) were ethers, hydroxyls, aldehydes and ketones. The HS extracted from floodable regions of the Rio Negro basin presented a greater capacity to retain (to complex, to adsorb physically and/or chemically) Hg(II), while nonfloodable regions showed a greater capacity to reduce Hg(II), indicating that HS extracted from different types of regions contribute in different ways to the biogeochemical mercury cycle in the basin of the mid-Rio Negro, AM, Brazil. (c) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular iron reduction has been suggested as a candidate metabolic pathway that may explain a large proportion of carbon respiration in temperate peatlands. However, the o-phenanthroline colorimetric method commonly employed to quantitate iron and partition between redox species is known to be unreliable in the presence of humic and fulvic acids, both of which represent a considerable proportion of peatland dissolved organic matter. We propose ionic liquid extraction as a more accurate iron quantitation and redox speciation method in humic-rich peat porewater. We evaluated both o-phenanthroline and ionic liquid extraction in four distinct peatland systems spanning a gradient of physico-chemical conditions to compare total iron recovery and Fe2+:Fe3+ ratios determined by each method. Ionic liquid extraction was found to provide more accurate iron quantitation and speciation in the presence of dissolved organic matter. A multivariate approach utilizing fluorescence- and UV-Vis spectroscopy was used to identify dissolved organic matter characteristics in peat porewater that lead to poor performance of the o-phenanthroline method. Where these interferences are present, we offer an empirical correction factor for total iron quantitation by o-phenanthroline, as verified by ionic liquid extraction. The written work presented in this thesis is in preparation for submission to Soil Biology and Biochemisrty by T.J. Veverica, E.S. Kane, A.M. Marcarelli, and S.A. Green.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of spectroscopy to the study of contaminants in soils is important. Among the many contaminants is arsenic, which is highly labile and may leach to non-contaminated areas. Minerals of arsenate may form depending upon the availability of specific cations for example calcium and iron. Such minerals include carminite, pharmacosiderite and talmessite. Each of these arsenate minerals can be identified by its characteristic Raman spectrum enabling identification.