945 resultados para Soil analysis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For data obtained from horizontal soil column experiments, the determination of soil-water transport characteristics and functions would be aided by a single-form equation capable of objectively describing water content theta vs. time t at given position x(f). Our study was conducted to evaluate two such possible equations, one having the form of the Weibull frequency distribution, and the other being called a bipower form. Each equation contained three parameters, and was fitted by nonlinear least squares to the experimental data from three separate columns of a single soil. Across the theta range containing the measured data points obtained by gamma-ray attenuation, the two equations were in close agreement. The resulting family of theta(x(f),t) transients, as obtained from either equation, enabled the evaluation of exponent n in the t(n) dependence of the positional advance of a given theta. Not only was n found to be <0.5 at low theta values, but it also increased with theta and tended toward 0.5 as theta approached its sated (near-saturated) value. Some quantitative uncertainty in n(theta) does arise due to the reduced number of data points available at the higher water contents. Without claiming non-Boltzmann behavior (n < 0.5) as necessarily representative of all soils, we nonetheless consider n(theta) to be worthy of further study for evaluating its significance and implications.
Resumo:
The 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applied herbicides around the world to control broad leave herbs in many crops: In this study, a method was developed for simultaneous extraction and determination of 2,4D and its major transformation product, i.e., the 2,4-dichlorophenol (2,4-DCP), in soil samples. The herbicide and its degradation product were extracted twice from soil samples, after acidification, by dichloromethane on ultrasound system for 1 h. Both extracts were combined and filtrated in qualitative filter paper and Celitee. The total extract was concentrated in rotatory evaporator, dried under N-2 and finally dissolved in 1 ml of methanol. High Performance Liquid Chromatography with UV detection at 230 nm was used for analysis. Recoveries were obtained from soil samples fortified at 0.1, 1.0, 2.0, 3.0 and 4.0 mg kg(-1) levels and the results varied from 85 to 111% (for 2,4-D) and from 95 to 98% (for 2,4-DCP). For both compounds, the limits of quantification were 0.1 mg kg(-1), which were the loss level at which the accuracy and the precision were studied. Nevertheless, the limits of detection, calculated by considering the blank standard deviation and the minimum concentration level, were 0.03 and 0.02 mg kg for 2,4-D and 2,4-DCP, respectively. This proposed method was applied to soil samples of eucalyptus crops, which was previously treated with the herbicide. Despite that, neither 2,4-D nor its degradation product were detected 30 days after the herbicide application. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is presented two study cases about the approach in root analysis at field and laboratory conditions based on digital image analysis. Grapevine (Vitis vinifera L.) and date palm (Phoenix dactylifera L.) root systems were analyzed by both the monolith and trench wall method aided by digital image analysis. Correlation between root parameters and their fractional distribution over the soil profile were obtained, as well as the root diameter estimation. Results have shown the feasibility of digital image analysis for evaluation of root distribution.
Resumo:
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L(-1), and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L(-1)), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L(-1) and 20.4, 9.0, 21.6, and 13.0 ng L(-1), respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L(-1) and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg(-1)), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg(-1)), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg(-1)). The relative standard deviation for the recovery of pesticides was under 15%.
Resumo:
The cone penetration test (CPT), together with its recent variation (CPTU), has become the most widely used in-situ testing technique for soil profiling and geotechnical characterization. The knowledge gained over the last decades on the interpretation procedures in sands and clays is certainly wide, whilst very few contributions can be found as regards the analysis of CPT(u) data in intermediate soils. Indeed, it is widely accepted that at the standard rate of penetration (v = 20 mm/s), drained penetration occurs in sands while undrained penetration occurs in clays. However, a problem arise when the available interpretation approaches are applied to cone measurements in silts, sandy silts, silty or clayey sands, since such intermediate geomaterials are often characterized by permeability values within the range in which partial drainage is very likely to occur. Hence, the application of the available and well-established interpretation procedures, developed for ‘standard’ clays and sands, may result in invalid estimates of soil parameters. This study aims at providing a better understanding on the interpretation of CPTU data in natural sand and silt mixtures, by taking into account two main aspects, as specified below: 1)Investigating the effect of penetration rate on piezocone measurements, with the aim of identifying drainage conditions when cone penetration is performed at a standard rate. This part of the thesis has been carried out with reference to a specific CPTU database recently collected in a liquefaction-prone area (Emilia-Romagna Region, Italy). 2)Providing a better insight into the interpretation of piezocone tests in the widely studied silty sediments of the Venetian lagoon (Italy). Research has focused on the calibration and verification of some site-specific correlations, with special reference to the estimate of compressibility parameters for the assessment of long-term settlements of the Venetian coastal defences.
Resumo:
‘where the land is greener’ looks at soil and water conservation from a global perspective. In total, 42 soil and water conservation technologies and 28 approaches are described – each fully illustrated with photographs, graphs and line drawings – as applied in case studies in more than 20 countries around the world. This unique presentation of case studies draws on WOCAT’s extensive database, gathered in over 12 years of field experience. The book is intended as a prototype for national and regional compilations of sustainable land management practices a practical – instrument for making field knowledge available to decision makers. Various land use categories are covered, from crop farming to grazing and forestry. The technologies presented range from terrace-building to agroforestry systems; from rehabilitation of common pastures to conservation agriculture; from Vermiculture to water harvesting. Several of these technologies are already well-established successes – others are innovative, relatively unknown, but full of promise. Descriptions of the various technologies are complemented by studies of the ‘approaches’ that have underpinned their development and dissemination. Some of these approaches were developed specifically for individual projects; others developed and spread spontaneously in fascinating processes that offer a new perspective for development policy. In addition to the case studies, the book includes two analytical sections on the technologies and approaches under study. By identifying common elements of success, these analyses offer hope for productive conservation efforts at the local level with simultaneous global environmental benefits. Policy pointers for decision makers and donors offer a new impetus for further investment – to make the land greener.
Resumo:
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) are toxic, highly leachable and often abundant at sites that are also contaminated with PAHs. However, due to lack of regulations and standardized methods for their analysis, they are seldom included in monitoring and risk-assessment programs. This intercomparison study constitutes an important step in the harmonization of the analytical methods currently used, and may also be considered a first step towards the certification of reference materials for these compounds. The results showed that the participants were able to determine oxy-PAHs with accuracy similar to PAHs, with average determined mass fractions agreeing well with the known levels in a spiked soil and acceptable inter- and intra-laboratory precisions for all soils analyzed. For the N-PACs, the results were less satisfactory, and have to be improved by using analytical methods more specifically optimized for these compounds.
Resumo:
The role of Soil Organic Carbon (SOC) in mitigating climate change, indicating soil quality and ecosystem function has created research interested to know the nature of SOC at landscape level. The objective of this study was to examine variation and distribution of SOC in a long-term land management at a watershed and plot level. This study was based on meta-analysis of three case studies and 128 surface soil samples from Ethiopia. Three sites (Gununo, Anjeni and Maybar) were compared after considering two Land Management Categories (LMC) and three types of land uses (LUT) in quasi-experimental design. Shapiro-Wilk tests showed non-normal distribution (p = 0.002, a = 0.05) of the data. SOC median value showed the effect of long-term land management with values of 2.29 and 2.38 g kg-1 for less and better-managed watersheds, respectively. SOC values were 1.7, 2.8 and 2.6 g kg-1 for Crop (CLU), Grass (GLU) and Forest Land Use (FLU), respectively. The rank order for SOC variability was FLU>GLU>CLU. Mann-Whitney U and Kruskal-Wallis test showed a significant difference in the medians and distribution of SOC among the LUT, between soil profiles (p<0.05, confidence interval 95%, a = 0.05) while it is not significant (p>0.05) for LMC. The mean and sum rank of Mann Whitney U and Kruskal Wallis test also showed the difference at watershed and plot level. Using SOC as a predictor, cross-validated correct classification with discriminant analysis showed 46 and 49% for LUT and LMC, respectively. The study showed how to categorize landscapes using SOC with respect to land management for decision-makers.
Resumo:
Soil degradation is widespread in the Ethiopian Highlands. Its negative impacts on soil productivity contribute to the extreme poverty of the rural population. Soil conservation is propagated as a means of reducing soil erosion, however, it is a costly investment for small-scale farming households. The present study is an attempt to show whether or not selected mechanical Soil and Water Conservation (SWC) technologies are profitable from a farmer’s point of view. A financial Cost-Benefit Analysis (CBA) is carried out to assess whether or not the considered SWC technologies are profitable from a farmer’s point of view. The CBA is supplemented by an evaluation of aspects from the economic and institutional environment. Whether or not soil conservation is profitable from a farmer’s point of view depends on a broad range of factors from the ecological, economic, political, institutional and socio-cultural sphere and also depends on the technology and the prevailing farming system. Because these factors are closely interlinked, it is often not sufficient to change or influence one to make SWC profitable. Several recommendations are formulated with regard to improving the profitability of SWC investments from a farmer’s point of view. Because the reasons for unsustainable resource use are manifold and highly interlinked, only a multi-stakeholder, multi-level and multi-objective approach is likely to offer solutions that address the underlying problems adequately.