985 resultados para Soil - Compaction and irrigation
Resumo:
There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha(-1) under continuous sugarcane to 141-144 t ha(-1) after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m(-2) under continuous sugarcane to 5.2-6.8 km m(-2) after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11% under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h(-1) to 1.34 mm h(-1), but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.
Resumo:
The elucidation of spatial variation in the landscape can indicate potential wildlife habitats or breeding sites for vectors, such as ticks or mosquitoes, which cause a range of diseases. Information from remotely sensed data could aid the delineation of vegetation distribution on the ground in areas where local knowledge is limited. The data from digital images are often difficult to interpret because of pixel-to-pixel variation, that is, noise, and complex variation at more than one spatial scale. Landsat Thematic Mapper Plus (ETM+) and Satellite Pour l'Observation de La Terre (SPOT) image data were analyzed for an area close to Douna in Mali, West Africa. The variograms of the normalized difference vegetation index (NDVI) from both types of image data were nested. The parameters of the nested variogram function from the Landsat ETM+ data were used to design the sampling for a ground survey of soil and vegetation data. Variograms of the soil and vegetation data showed that their variation was anisotropic and their scales of variation were similar to those of NDVI from the SPOT data. The short- and long-range components of variation in the SPOT data were filtered out separately by factorial kriging. The map of the short-range component appears to represent the patterns of vegetation and associated shallow slopes and drainage channels of the tiger bush system. The map of the long-range component also appeared to relate to broader patterns in the tiger bush and to gentle undulations in the topography. The results suggest that the types of image data analyzed in this study could be used to identify areas with more moisture in semiarid regions that could support wildlife and also be potential vector breeding sites.
Resumo:
A field monitoring study was carried out to follow the changes of fine root morphology, biomass and nutrient status in relation to seasonal changes in soil solution chemistry and moisture regime in a mature Scots pine stand on acid soil. Seasonal and yearly fluctuations in soil moisture and soil solution chemistry have been observed. Changes in soil moisture accounted for some of the changes in the soil solution chemistry. The results showed that when natural acidification in the soil occurs with low pH (3.5-4.2) and high aluminium concentration in the soil solution (> 3-10 mg l(-1)), fine root longevity and distribution could be affected. However, fine root growth of Scots pine may not be negatively influenced by adverse soil chemical conditions if soil moisture is not a limiting factor for root growth. In contrast, dry soil conditions increase Scots pine susceptibility to soil acidification and this could significantly reduce fine root growth and increase root mortality. It is therefore important to study seasonal fluctuations of the environmental variables when investigating and modelling cause-effect relationships.
Resumo:
Soil moisture content, theta, of a bare and vegetated UK gravelly sandy loam soil (in situ and repacked in small lysimeters) was measured using various dielectric instruments (single-sensor ThetaProbes, multi-sensor Profile Probes, and Aquaflex Sensors), at depths ranging between 0.03 and I m, during the summers of 2001 (in situ soil) and 2002 (mini-lysimeters). Half-hourly values of evaporation, E, were calculated from diurnal changes in total soil profile water content, using the soil water balance equation. For the bare soil field, Profile Probes and ML2x ThetaProbes indicated a diurnal course of theta that did not concur with typical soil physical observations: surface layer soil moisture content increased from early morning until about midday, after which theta declined, generally until the early evening. The unexpected course of theta was positively correlated to soil temperature, T-s, also at deeper depths. Aquaflex and ML1 ThetaProbe (older models) outputs, however, reflected common observations: 0 increased slightly during the night (capillary rise) and decreased from the morning until late afternoon (as a result of evaporation). For the vegetated plot, the spurious diurnal theta fluctuations were less obvious, because canopy shading resulted in lower amplitudes of T-s. The unrealistic theta profiles measured for the bare and vegetated field sites caused diurnal estimates of E to attain downward daytime and upward night-time values. In the mini-lysimeters, at medium to high moisture contents, theta values measured by (ML2x) ThetaProbes followed a relatively realistic course, and predictions of E from diurnal changes in vertically integrated theta generally compared well with lysimeter estimates of E. However, time courses of theta and E became comparable to those observed for the field plots when the soil in the lysimeters reached relatively low values of theta. Attempts to correct measured theta for fluctuations in T, revealed that no generally applicable formula could be derived. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities.
Resumo:
The effects of biosolids from tomato processing on soil properties and wheat growth were investigated in an Alfisol from central Greece. Biosolids were mixed with soil from the surface (Ap) or subsurface (Bt) horizon in plastic containers at rates of 1%, 5%, and 10% by dry weight (d.w.; equivalent to 10, 50, and 100 Mg ha–1). Biosolid treatments were compared to an NH4Cl application (50 mg N kg–1) and an untreated control in (1) a 102 d incubation experiment at 28°C to determine biosolid nitrification potential and (2) a 45 d outdoor experiment to evaluate effects on soil fertility and wheat growth. Mineralization of biosolids in the incubation experiment resulted in accumulation of nitrate-N and indicated that biosolids were able to supply N that was in excess of crop needs in treatments of 5% and 10%. After 45 d of wheat growth, available soil nutrients (N, P) and P uptake by wheat were distinctly lower in the Bt than in the Ap horizon. However, soil pH, electrical conductivity, organic matter, total N, nitrate-N, extractable P, and exchangeable K increased with increasing rate of biosolid application in both soils. These were followed by corresponding increases in wheat nutrient uptake and biomass production, thus demonstrating the importance of this organic material for sustaining production in soils of low immediate fertility. Compared to the NH4Cl treatment (50 kg N ha–1 equivalent), biosolid application rates of 5% and 10% had higher available soil nutrients, similar or higher nutrient uptake and higher wheat biomass. But only an application of 10% biosolids provided sufficient N levels for wheat in the surface soil, and even higher applications were required for providing sufficient N and P in the Bt horizon.
Resumo:
1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.
Resumo:
The area of soil disturbed using a single tine is well documented. However, modern strip tillage implements using a tine and disc design have not been assessed in the UK or in mainland Europe. Using a strip tillage implement has potential benefits for European agriculture where economic returns and sustainability are key issues. Using a strip tillage system a narrow zone is cultivated leaving most of the straw residue on the soil surface. Small field plot experiments were undertaken on three soil types and the operating parameters of forward speed, tine depth and tine design were investigated together with measurements of seedbed tilth and crop emergence. The type of tine used was found to be the primary factor in achieving the required volume of disturbance within a narrow zone whilst maintaining an area of undisturbed soil with straw residue on the surface. The winged tine produced greater disturbance at a given depth compared with the knife tine. Increasing forward speed did not consistently increase the volume of disturbance. In a sandy clay loam the tilth created and emergence of sugar beet by strip tillage and ploughing were similar but on a sandy loam the strip tillage treatments generally gave a finer tilth but poorer emergence particularly at greater working depth.
Resumo:
Ecosystems consist of aboveground and belowground subsystems and the structure of their communities is known to change with distance. However, most of this knowledge originates from visible, aboveground components, whereas relatively little is known about how soil community structure varies with distance and if this variability depends on the group of organisms considered. In the present study, we analyzed 30 grasslands from three neighboring chalk hill ridges in southern UK to determine the effect of geographic distance (1e198 km) on the similarity of bacterial communities and of nematode communities in the soil. We found that for both groups, community similarity decayed with distance and that this spatial pattern was not related to changes either in plant community composition or soil chemistry. Site history may have contributed to the observed pattern in the case of nematodes, since the distance effect depended on the presence of different nematode taxa at one of the hill ridges. On the other hand, site-related differences in bacterial community composition alone could not explain the spatial turnover, suggesting that other factors, such as biotic gradients and local dispersal processes that we did not include in our analysis, may be involved in the observed pattern. We conclude that, independently of the variety of causal factors that may be involved, the decay in similarity with geographic distance is a characteristic feature of both communities of soil bacteria and nematodes.
Resumo:
There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
Restoration schemes aimed at enhancing plant species diversity of improved agricultural grassland have been a key feature of agri-environmental policy since the mid 1980s. Allied to this has been much research aimed at providing policy makers with guidelines on how best to manage grassland to restore botanical diversity. This research includes long-term studies of the consequences for grassland diversity of management techniques such as different hay cut dates, fertiliser additions, seed introductions and grazing regimes. Studies have also explored the role of introductions of Rhinanthus minor into species-poor swards to debilitate competitive grasses. While these studies have been successful in identifying some management features that control plant species diversity in agricultural grassland, they have taken a largely aboveground perspective on plant community dynamics.