972 resultados para Site-selection
Resumo:
Experimental analyses of hermit crabs and their preferences for shells are essential to understand the intrinsic relationship of the crabs' dependence on shells, and may be useful to explain their shell use pattern in nature. The aim of this study was to evaluate the effect of crab species and site on the pattern of shell use, selection, and preference in the south-western Atlantic hermit crabs Pagurus brevidactylus and Pagurus criniticornis, comparing sympatric and allopatric populations. Differently from the traditional approach to evaluate shell preference by simply determining the shell selection pattern (i.e., the number of shells of each type selected), preference was defined (according to [Liszka, D., Underwood, AJ., 1990. An experimental design to determine preferences for gastropod shells by a hermit-crab. J. Exp. Mar. Biol. Ecol., 137(1), 47-62]) by the comparison of the number of crabs changing for a particular shell type when three options were given (Cerithium atratum, Morula nodulosa, and Tegula viridula) with the number of crabs changing for this same type when only this type was offered. The effect of crab species was tested at Cabelo Gordo Beach, where P. brevidacrylus was found occupying shells of C. atratum, M. nodulosa, and T viridula in similar frequencies, whereas P. criniticornis occupied predominantly shells of C atratum. In laboratory experiments the selection patterns of the two hermit-crab species for these three gastropods were different, with P criniticornis selecting mainly shells of C atratum, and R brevidactylus selecting more shells of M. nodulosa. The shell preference was also dependent on crab species, with P. criniticornis showing a clear preference for shells of C atratum, whereas P. brevidactylus did not show a preference for any of the tested shells. The effect of site was tested for the two species comparing data from Cabelo Gordo to Preta (P brevidactylus) and Araca beaches (P. criniticornis). The pattern of shell use, selection, and preference was demonstrated to be dependent on site only for P. brevidactylus. The results also showed that the shell use pattern of P criniticornis can be explained by its preference at both sites, whereas for P. brevidactylus it occurred only at Cabelo Gordo, where the absence of preference was correlated with the similar use of the three gastropod species studied. Finally, the results showed that the shell selection pattern cannot be considered as a measure of shell preference, since it overestimates crab selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Experimental analyses of hermit crabs and their preferences for shells are essential to understand the intrinsic relationship of the crabs` dependence on shells, and may be useful to explain their shell use pattern in nature. The aim of this study was to evaluate the effect of crab species and site on the pattern of shell use, selection, and preference in the south-western Atlantic hermit crabs Pagurus brevidactylus and Pagurus criniticornis, comparing sympatric and allopatric populations. Differently from the traditional approach to evaluate shell preference by simply determining the shell selection pattern (i.e., the number of shells of each type selected), preference was defined (according to [Liszka, D., Underwood, AJ., 1990. An experimental design to determine preferences for gastropod shells by a hermit-crab. J. Exp. Mar. Biol. Ecol., 137(1), 47-62]) by the comparison of the number of crabs changing for a particular shell type when three options were given (Cerithium atratum, Morula nodulosa, and Tegula viridula) with the number of crabs changing for this same type when only this type was offered. The effect of crab species was tested at Cabelo Gordo Beach, where P. brevidacrylus was found occupying shells of C. atratum, M. nodulosa, and T viridula in similar frequencies, whereas P. criniticornis occupied predominantly shells of C atratum. In laboratory experiments the selection patterns of the two hermit-crab species for these three gastropods were different, with P criniticornis selecting mainly shells of C atratum, and R brevidactylus selecting more shells of M. nodulosa. The shell preference was also dependent on crab species, with P. criniticornis showing a clear preference for shells of C atratum, whereas P. brevidactylus did not show a preference for any of the tested shells. The effect of site was tested for the two species comparing data from Cabelo Gordo to Preta (P brevidactylus) and Araca beaches (P. criniticornis). The pattern of shell use, selection, and preference was demonstrated to be dependent on site only for P. brevidactylus. The results also showed that the shell use pattern of P criniticornis can be explained by its preference at both sites, whereas for P. brevidactylus it occurred only at Cabelo Gordo, where the absence of preference was correlated with the similar use of the three gastropod species studied. Finally, the results showed that the shell selection pattern cannot be considered as a measure of shell preference, since it overestimates crab selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chorismate mutase (EC 5.4.99.5) catalyzes the intramolecular rearrangement of chorismate to prephenate. Arg-90 in the active site of the enzyme from Bacillus subtilis is in close proximity to the substrate's ether oxygen and may contribute to efficient catalysis by stabilizing the presumed dipolar transition state that would result upon scission of the C--O bond. To test this idea, we have developed a novel complementation system for chorismate mutase activity in Escherichia coli by reengineering parts of the aromatic amino acid biosynthetic pathway. The codon for Arg-90 was randomized, alone and in combination with that for Cys-88, and active clones were selected. The results show that a positively charged residue either at position 88 (Lys) or 90 (Arg or Lys) is essential. Our data provide strong support for the hypothesis that the positive charge is required for stabilization of the transition state of the enzymatic chorismate rearrangement. The new selection system, in conjunction with combinatorial mutagenesis, renders the mechanism of the natural enzyme(s) accessible to further exploration and opens avenues for the improvement of first generation catalytic antibodies with chorismate mutase activity.
Resumo:
Rocq
Resumo:
Photograph of a mural
Resumo:
Experimental analyses of hermit crabs and their preferences for shells are essential to understand the intrinsic relationship of the crabs' dependence on shells, and may be useful to explain their shell use pattern in nature. The aim of this study was to evaluate the effect of crab species and site on the pattern of shell use, selection, and preference in the south-western Atlantic hermit crabs Pagurus brevidactylus and Pagurus criniticornis, comparing sympatric and allopatric populations. Differently from the traditional approach to evaluate shell preference by simply determining the shell selection pattern (i.e., the number of shells of each type selected), preference was defined (according to [Liszka, D., Underwood, AJ., 1990. An experimental design to determine preferences for gastropod shells by a hermit-crab. J. Exp. Mar. Biol. Ecol., 137(1), 47-62]) by the comparison of the number of crabs changing for a particular shell type when three options were given (Cerithium atratum, Morula nodulosa, and Tegula viridula) with the number of crabs changing for this same type when only this type was offered. The effect of crab species was tested at Cabelo Gordo Beach, where P. brevidacrylus was found occupying shells of C. atratum, M. nodulosa, and T viridula in similar frequencies, whereas P. criniticornis occupied predominantly shells of C atratum. In laboratory experiments the selection patterns of the two hermit-crab species for these three gastropods were different, with P criniticornis selecting mainly shells of C atratum, and R brevidactylus selecting more shells of M. nodulosa. The shell preference was also dependent on crab species, with P. criniticornis showing a clear preference for shells of C atratum, whereas P. brevidactylus did not show a preference for any of the tested shells. The effect of site was tested for the two species comparing data from Cabelo Gordo to Preta (P brevidactylus) and Araca beaches (P. criniticornis). The pattern of shell use, selection, and preference was demonstrated to be dependent on site only for P. brevidactylus. The results also showed that the shell use pattern of P criniticornis can be explained by its preference at both sites, whereas for P. brevidactylus it occurred only at Cabelo Gordo, where the absence of preference was correlated with the similar use of the three gastropod species studied. Finally, the results showed that the shell selection pattern cannot be considered as a measure of shell preference, since it overestimates crab selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We tested the effects of four data characteristics on the results of reserve selection algorithms. The data characteristics were nestedness of features (land types in this case), rarity of features, size variation of sites (potential reserves) and size of data sets (numbers of sites and features). We manipulated data sets to produce three levels, with replication, of each of these data characteristics while holding the other three characteristics constant. We then used an optimizing algorithm and three heuristic algorithms to select sites to solve several reservation problems. We measured efficiency as the number or total area of selected sites, indicating the relative cost of a reserve system. Higher nestedness increased the efficiency of all algorithms (reduced the total cost of new reserves). Higher rarity reduced the efficiency of all algorithms (increased the total cost of new reserves). More variation in site size increased the efficiency of all algorithms expressed in terms of total area of selected sites. We measured the suboptimality of heuristic algorithms as the percentage increase of their results over optimal (minimum possible) results. Suboptimality is a measure of the reliability of heuristics as indicative costing analyses. Higher rarity reduced the suboptimality of heuristics (increased their reliability) and there is some evidence that more size variation did the same for the total area of selected sites. We discuss the implications of these results for the use of reserve selection algorithms as indicative and real-world planning tools.
Resumo:
Environmental conditions play a significant role in the economic success of aquaculture. This article classifies environmental factors in a way that facilitates economic analysis of their implications for the selection of aquaculture species and systems. The implication of on-farm as on-site environmental conditions for this selection are considered first using profit-possibility frontiers and taking into account the biological law of environmental tolerance. However, in selecting, recommending and developing aquaculture species and systems, it is often unrealistic to assume the degree of managerial efficiency implied by the profit-possibility function. It is appropriate to take account of the degree of managerial inefficiency that actually exists, not all of which may be capable of being eliminated. Furthermore, experimental R&D should be geared to on-farm conditions, and the variability of these conditions needs to be taken into account. Particularly in shared water bodies, environmental spillovers between aquaculturalists can be important and as shown theoretically, can influence the socially optimal selection of aquaculture species and systems. Similarly, aquaculture can have environmental consequences for the rest of the community. The social economic implications of this for the selection of aquaculture species and systems are analyzed. Some paradoxical results are obtained. For example, if the quality of social governance of aquaculture is poor, aquaculture species and systems that cause a slow rate of environmental deterioration may be socially less satisfactory than those that cause a rapid rate of such deterioration. Socially optimal choice of aquaculture species and systems depends not only on their biophysical characteristics and market conditions but also on the prevailing state of governance of aquaculture. Failure to consider the last aspect can result in the introduction of new aquaculture species (and systems) doing more social harm than good.
Resumo:
We have examined the basis for immunodominant or public TCR usage in an antiviral CTL response. Residues encoded by each of the highly selected genetic elements of an immunodominant clonotype recognizing Epstein-Barr virus were critical to the antigen specificity of the receptor. Upon recognizing antigen the immunodominant TCR undergoes extensive conformational changes in the complementarity determining regions (CDRs), including the disruption of the canonical structures of the germline-encoded CDR1alpha and CDR2alpha loops to produce an enhanced fit with the HLA-peptide complex. TCR ligation induces conformational changes in the TCRalpha constant domain thought to form part of the docking site for CD3epsilon. These findings indicate that TCR immunodominance is associated with structural properties conferring receptor specificity and suggest a novel structural link between TCR ligation and intracellular signaling.
Resumo:
This paper presents a case study of heat exchanger network (HEN) retrofit with the objective to reduce the utilities consumption in a biodiesel production process. Pinch analysis studies allow determining the minimum duty utilities as well the maximum of heat recovery. The existence of heat exchangers for heat recovery already running in the process causes a serious restriction for the implementation of grassroot HEN design based on pinch studies. Maintaining the existing HEN, a set of alternatives with additional heat exchangers was created and analysed using some industrial advice and selection criteria. The final proposed solution allows to increase the actual 18 % of recovery heat of the all heating needs of the process to 23 %, with an estimated annual saving in hot utility of 35 k(sic)/y.
Resumo:
BACKGROUND: Excision and primary midline closure for pilonidal disease (PD) is a simple procedure; however, it is frequently complicated by infection and prolonged healing. The aim of this study was to analyze risk factors for surgical site infection (SSI) in this context. METHODS: All consecutive patients undergoing excision and primary closure for PD from January 2002 through October 2008 were retrospectively assessed. The end points were SSI, as defined by the Center for Disease Control, and time to healing. Univariable and multivariable risk factor analyses were performed. RESULTS: One hundred thirty-one patients were included [97 men (74%), median age = 24 (range 15-66) years]. SSI occurred in 41 (31%) patients. Median time to healing was 20 days (range 12-76) in patients without SSI and 62 days (range 20-176) in patients with SSI (P < 0.0001). In univariable and multivariable analyses, smoking [OR = 2.6 (95% CI 1.02, 6.8), P = 0.046] and lack of antibiotic prophylaxis [OR = 5.6 (95% CI 2.5, 14.3), P = 0.001] were significant predictors for SSI. Adjusted for SSI, age over 25 was a significant predictor of prolonged healing. CONCLUSION: This study suggests that the rate of SSI after excision and primary closure of PD is higher in smokers and could be reduced by antibiotic prophylaxis. SSI significantly prolongs healing time, particularly in patients over 25 years.
Resumo:
A stringent branch-site codon model was used to detect positive selection in vertebrate evolution. We show that the test is robust to the large evolutionary distances involved. Positive selection was detected in 77% of 884 genes studied. Most positive selection concerns a few sites on a single branch of the phylogenetic tree: Between 0.9% and 4.7% of sites are affected by positive selection depending on the branches. No functional category was overrepresented among genes under positive selection. Surprisingly, whole genome duplication had no effect on the prevalence of positive selection, whether the fish-specific genome duplication or the two rounds at the origin of vertebrates. Thus positive selection has not been limited to a few gene classes, or to specific evolutionary events such as duplication, but has been pervasive during vertebrate evolution.
Resumo:
CodeML (part of the PAML package) im- plements a maximum likelihood-based approach to de- tect positive selection on a specific branch of a given phylogenetic tree. While CodeML is widely used, it is very compute-intensive. We present SlimCodeML, an optimized version of CodeML for the branch-site model. Our performance analysis shows that SlimCodeML substantially outperforms CodeML (up to 9.38 times faster), especially for large-scale genomic analyses.
Resumo:
Poor understanding of the spliceosomal mechanisms to select intronic 3' ends (3'ss) is a major obstacle to deciphering eukaryotic genomes. Here, we discern the rules for global 3'ss selection in yeast. We show that, in contrast to the uniformity of yeast splicing, the spliceosome uses all available 3'ss within a distance window from the intronic branch site (BS), and that in 70% of all possible 3'ss this is likely to be mediated by pre-mRNA structures. Our results reveal that one of these RNA folds acts as an RNA thermosensor, modulating alternative splicing in response to heat shock by controlling alternate 3'ss availability. Thus, our data point to a deeper role for the pre-mRNA in the control of its own fate, and to a simple mechanism for some alternative splicing.
Resumo:
Les gènes orthologues divergent sur plusieurs aspects durant l'évolution. Après une revue de la littérature cherchant à montrer de la divergence entre les orthologues de l'humain et de la souris, j'ai souligné les différentes causes de cette divergence. En comparant les gènes qui divergent en fonction, je n'ai pas trouvé de lien avec la divergence des séquences, pour cette raison je me suis penché sur l'étude de l'expression. Notamment, j'ai étudié le niveau, la spécificité ainsi que la présence/absence d'expression des orthologues humain-souris liés aux maladies Mendéliennes. Malgré les similarités trouvées entre l'humain et la souris, j'ai détecté une différence d'expression spécifique à une des deux espèces liée a un phénotype précis (gène essentiel/non-essentiel). Cela m'a permis de conclure que la différence sur le plan phénotypique entre l'humain et la souris est mieux expliquée par les patrons d'expression plutôt que le niveau d'expression ou la sélection. J'ai été également intéressé par l'évolution des séquences d'ADN codantes pour des protéines, en particulier sur le rôle de la sélection. J'ai commencé par une étude sur la fiabilité de détection de la sélection positive en comparant des séquences divergentes. J'ai trouvé, en utilisant le model de branche-site que la sélection peut être détectée sur des séquences qui ont divergé il y a plus de 500 millions d'années. J'ai analysé le biais de GC entres les séquences sans trouver une influence sur l'estimation de la sélection positive. Finalement, Je crois que ce travail est une première étape dans l'établissement d'un lien entre la sélection et les patrons d'expression des gènes chez les vertébrés.