915 resultados para Simulated annealing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a Reinforcement Learning (RL) approach to economic dispatch (ED) using Radial Basis Function neural network. We formulate the ED as an N stage decision making problem. We propose a novel architecture to store Qvalues and present a learning algorithm to learn the weights of the neural network. Even though many stochastic search techniques like simulated annealing, genetic algorithm and evolutionary programming have been applied to ED, they require searching for the optimal solution for each load demand. Also they find limitation in handling stochastic cost functions. In our approach once we learn the Q-values, we can find the dispatch for any load demand. We have recently proposed a RL approach to ED. In that approach, we could find only the optimum dispatch for a set of specified discrete values of power demand. The performance of the proposed algorithm is validated by taking IEEE 6 bus system, considering transmission losses

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compare a broad range of optimal product line design methods. The comparisons take advantage of recent advances that make it possible to identify the optimal solution to problems that are too large for complete enumeration. Several of the methods perform surprisingly well, including Simulated Annealing, Product-Swapping and Genetic Algorithms. The Product-Swapping heuristic is remarkable for its simplicity. The performance of this heuristic suggests that the optimal product line design problem may be far easier to solve in practice than indicated by complexity theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can therefore be achieved by distributing individual DASH runs over a network of computers. The GDASH program achieves this by packaging DASH in a form that enables it to run under the Univa UD Grid MP system, which harnesses networks of existing computing resources to perform calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Modest increases in speed of execution can therefore be achieved by executing individual DASH runs on the individual cores of CPUs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Matheron's usual variogram estimator can result in unreliable variograms when data are strongly asymmetric or skewed. Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. This paper examines the effects of underlying asymmetry on the variogram and on the accuracy of prediction, and the second one examines the effects arising from outliers. Standard geostatistical texts suggest ways of dealing with underlying asymmetry; however, this is based on informed intuition rather than detailed investigation. To determine whether the methods generally used to deal with underlying asymmetry are appropriate, the effects of different coefficients of skewness on the shape of the experimental variogram and on the model parameters were investigated. Simulated annealing was used to create normally distributed random fields of different size from variograms with different nugget:sill ratios. These data were then modified to give different degrees of asymmetry and the experimental variogram was computed in each case. The effects of standard data transformations on the form of the variogram were also investigated. Cross-validation was used to assess quantitatively the performance of the different variogram models for kriging. The results showed that the shape of the variogram was affected by the degree of asymmetry, and that the effect increased as the size of data set decreased. Transformations of the data were more effective in reducing the skewness coefficient in the larger sets of data. Cross-validation confirmed that variogram models from transformed data were more suitable for kriging than were those from the raw asymmetric data. The results of this study have implications for the 'standard best practice' in dealing with asymmetry in data for geostatistical analyses. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. The first paper of this series examined the effects of the former on the variogram and this paper examines the effects of asymmetry arising from outliers. Simulated annealing was used to create normally distributed random fields of different size that are realizations of known processes described by variograms with different nugget:sill ratios. These primary data sets were then contaminated with randomly located and spatially aggregated outliers from a secondary process to produce different degrees of asymmetry. Experimental variograms were computed from these data by Matheron's estimator and by three robust estimators. The effects of standard data transformations on the coefficient of skewness and on the variogram were also investigated. Cross-validation was used to assess the performance of models fitted to experimental variograms computed from a range of data contaminated by outliers for kriging. The results showed that where skewness was caused by outliers the variograms retained their general shape, but showed an increase in the nugget and sill variances and nugget:sill ratios. This effect was only slightly more for the smallest data set than for the two larger data sets and there was little difference between the results for the latter. Overall, the effect of size of data set was small for all analyses. The nugget:sill ratio showed a consistent decrease after transformation to both square roots and logarithms; the decrease was generally larger for the latter, however. Aggregated outliers had different effects on the variogram shape from those that were randomly located, and this also depended on whether they were aggregated near to the edge or the centre of the field. The results of cross-validation showed that the robust estimators and the removal of outliers were the most effective ways of dealing with outliers for variogram estimation and kriging. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen’s Self Organizing Map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the High Throughput Screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of applying a fragment-based protein tertiary structure prediction method to the prediction of 14 CASP5 target domains are described. The method is based on the assembly of supersecondary structural fragments taken from highly resolved protein structures using a simulated annealing algorithm. A number of good predictions for proteins with novel folds were produced, although not always as the first model. For two fold recognition targets, FRAGFOLD produced the most accurate model in both cases, despite the fact that the predictions were not based on a template structure. Although clear progress has been made in improving FRAGFOLD since CASP4, the ranking of final models still seems to be the main problem that needs to be addressed before the next CASP experiment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. This will damage some of the key properties of the space-time codes and can lead to substantial performance degradation. In this paper, we study the design of linear dispersion codes (LDCs) for such asynchronous cooperative communication networks. Firstly, the concept of conventional LDCs is extended to the delay-tolerant version and new design criteria are discussed. Then we propose a new design method to yield delay-tolerant LDCs that reach the optimal Jensen's upper bound on ergodic capacity as well as minimum average pairwise error probability. The proposed design employs stochastic gradient algorithm to approach a local optimum. Moreover, it is improved by using simulated annealing type optimization to increase the likelihood of the global optimum. The proposed method allows for flexible number of nodes, receive antennas, modulated symbols and flexible length of codewords. Simulation results confirm the performance of the newly-proposed delay-tolerant LDCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simulated annealing approach to crystal structure determination from powder diffraction data, as implemented in the DASH program, is readily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can be achieved by distributing individual DASH runs over a network of computers. The CDASH program delivers this by using scalable on-demand computing clusters built on the Amazon Elastic Compute Cloud service. By way of example, a 360 vCPU cluster returned the crystal structure of racemic ornidazole (Z0 = 3, 30 degrees of freedom) ca 40 times faster than a typical modern quad-core desktop CPU. Whilst used here specifically for DASH, this approach is of general applicability to other packages that are amenable to coarse-grained parallelism strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in species composition is an important process in many ecosystems but rarely considered in systematic reserve site selection. To test the influence of temporal variability in species composition on the establishment of a reserve network, we compared network configurations based on species data of small mammals and frogs sampled during two consecutive years in a fragmented Atlantic Forest landscape (SE Brazil). Site selection with simulated annealing was carried out with the datasets of each single year and after merging the datasets of both years. Site selection resulted in remarkably divergent network configurations. Differences are reflected in both the identity of the selected fragments and in the amount of flexibility and irreplaceability in network configuration. Networks selected when data for both years were merged did not include all sites that were irreplaceable in one of the 2 years. Results of species number estimation revealed that significant changes in the composition of the species community occurred. Hence, temporal variability of community composition should be routinely tested and considered in systematic reserve site selection in dynamic systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.