1000 resultados para Signalisation cellulaire
Resumo:
UANL
Resumo:
L’expansion des maladies métaboliques dans les sociétés modernes exige plus d’activités de recherche afin d’augmenter notre compréhension des mécanismes et l’identification de nouvelles cibles d’interventions cliniques. L’obésité, la résistance à l’insuline (RI) et la dyslipidémie, en particulier sont tous des facteurs de risque associés à la pathogenèse du diabète de type 2 (DT2) et des maladies cardiovasculaires. Ainsi, la dyslipidémie postprandiale, notamment la surproduction des lipoprotéines hépatiques et intestinales, contribue d’une façon significative à l’hypertriglycéridémie. Quoique plusieurs études cliniques et fondamentales chez l’homme et les modèles animaux aient mis en évidence les rôles importants joués par le foie et l’intestin dans la dyslipidémie, les mécanismes moléculaires en cause ne sont pas bien élucidés. L’une des voies principales régulant le métabolisme lipidique est la voie de la protéine kinase AMPK. L’épuisement de l’ATP intracellulaire entraîne une activation de l’AMPK qui va œuvrer pour rétablir l’équilibre énergétique en stimulant des voies génératrices d’ATP et en inhibant des voies anaboliques consommatrices d’ATP. Les effets positifs de l’activation de l’AMPK comprennent l’augmentation de la sensibilité à l’insuline dans les tissus périphériques, la réduction de l’hyperglycémie et la réduction de la lipogenèse, d’où son importance dans les interventions cliniques pour la correction des dérangements métaboliques. Il est à souligner que le rôle de l’AMPK dans le foie et l’intestin semble plus complexe et mal compris. Ainsi, la voie de signalisation de l’AMPK n’est pas bien élucidée dans les situations pathologiques telles que le DT2, la RI et l’obésité. Dans le présent projet, notre objectif consiste à caractériser le rôle de cette voie de signalisation dans la lipogenèse hépatique et dans le métabolisme des lipides dans l’intestin chez le Psammomys obesus, un modèle animal d’obésité, de RI et de DT2. À cette fin, 3 groupes d’animaux sont étudiés (i.e. contrôle, RI et DT2). En caractérisant la voie de signalisation de l’AMPK/ACC dans le foie, nous avons constaté une augmentation de l’expression génique des enzymes clés de la lipogenèse (ACC, FAS, SCD-1 et mGPAT) et des facteurs de transcription (ChREBP, SREBP-1) qui modulent leur niveau d’expression. Nos analyses détaillées ont révélé, par la suite, une nette augmentation de l’expression de l’isoforme cytosolique de l’ACC, ACC1 (impliqué dans la lipogenèse de novo) concomitante avec une invariabilité de l’expression de l’isoforme mitochondrial ACC2 (impliqué dans la régulation négative de la β-oxydation). En dépit d’un état adaptatif caractérisé par une expression protéique et une phosphorylation (activation) élevées de l’AMPKα, l’activité de la kinase qui phosphoryle et inhibe l’ACC reste très élevée chez les animaux RI et DT2. Au niveau de l’intestin grêle des animaux RI et DT2, nous avons démontré que l’augmentation de la lipogenèse intestinale est principalement associée avec une diminution de la voie de signalisation de l’AMPK (i.e. expression protéique et phosphorylation/activation réduites des deux isoformes AMPKα1 et AMPKα2). La principale conséquence de la diminution de l’activité AMPK est la réduction de la phosphorylation de l’ACC. Étant donné que le niveau d’expression totale d’ACC reste inchangé, nos résultats suggèrent donc une augmentation de l’activité des deux isoformes ACC1 et ACC2. En parallèle, nous avons observé une réduction de l’expression protéique et génique de la CPT1 [enzyme clé de la β-oxydation des acides gras (AG)]. L’ensemble de ces résultats suggère une inhibition de l’oxydation des AG concomitante avec une stimulation de la lipogenèse de novo. Enfin, nous avons démontré que l’intestin grêle est un organe sensible à l’action de l’insuline et que le développement de la résistance à l’insuline pourrait altérer les deux voies de signalisation (i.e. Akt/GSK3 et p38MAPK) essentielles dans plusieurs processus métaboliques. En conclusion, nos résultats indiquent que l’augmentation de la lipogenèse qui contribue pour une grande partie à la dyslipidémie dans la résistance à l’insuline et le diabète serait due, en partie, à des défauts de signalisation par l’AMPK. Nos observations illustrent donc le rôle crucial du système AMPK au niveau hépatique et intestinal, ce qui valide l’approche thérapeutique consistant à activer l’AMPK pour traiter les maladies métaboliques.
Resumo:
Les urodèles amphibiens, dont fait partie l’axolotl (Ambystoma mexicanum), ont la capacité de régénérer leurs organes et membres suite à une amputation, tout au long de leur vie. La patte est l’organe dont le processus de régénération est le mieux caractérisé et ce dernier est divisé en deux phases principales. La première est la phase de préparation et commence immédiatement suite à l’amputation. Elle renferme des étapes essentielles au processus de régénération comme la guérison de la plaie et la formation d’une coiffe apicale ectodermique. Par la suite, les fibroblastes du derme et certaines cellules musculaires vont revenir à un état pluripotent via un processus appelé dédifférenciation cellulaire. Une fois dédifférenciées, ces cellules migrent et s’accumulent sous la coiffe apicale pour former le blastème. Lors de la phase de redéveloppement, les cellules du blastème se divisent puis se redifférencient pour régénérer la partie amputée. Fait intéressant, la régénération d’un membre ou la guérison d’une plaie chez l’axolotl ne mène jamais à la formation d’une cicatrice. Afin d’en apprendre plus sur le contrôle moléculaire de la régénération, les gènes Heat-shock protein-70 (Hsp-70) et Transforming growth factor-β1 (Tgf-β1) ont été sélectionnés. Ces gènes jouent un rôle important dans la réponse au stress et lors de la guérison des plaies chez les mammifères. HSP-70 est une chaperonne moléculaire qui est produite pour maintenir l’intégrité des protéines cellulaires lorsqu’un stress se présente. TGF-β1 est une cytokine produite suite à une blessure qui active la réponse inflammatoire et qui stimule la fermeture de la plaie chez les amniotes. Les résultats présentés dans cette thèse démontrent que Hsp-70 est exprimé et régulé lors du développement et de la régénération du membre chez l’axolotl. D’autre part, nos expériences ont mené à l’isolation de la séquence codante pour Tgf-β1 chez l’axolotl. Nos résultats montrent que Tgf-β1 est exprimé spécifiquement lors de la phase de préparation dans le membre en régénération. De plus, le blocage de la voie des Tgf-β avec l’inhibiteur pharmacologique SB-431542, lors de la régénération, mène à l’inhibition du processus. Ceci démontre que la signalisation via la voie des Tgf-β est essentielle à la régénération du membre chez l’axolotl.
Resumo:
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude. Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3). Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1. En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation.
Resumo:
Les opioïdes sont les analgésiques les plus efficaces mais leur utilisation est limitée par la tolérance, un processus lié en partie à la désensibilisation des récepteurs. Le rôle de la présente étude était de mieux caractériser le processus de désensibilisation des récepteurs et plus particulièrement, d’étudier le rôle de la tyrosine kinase Src sur la régulation de la signalisation des récepteurs delta opioïdes. Nos résultats démontrent que l’inhibition pharmacologique avec PP2 (à faible concentration : 20- 40µM) ou encore l’inhibition moléculaire de la kinase avec de faibles concentrations d’ADN d’un mutant dominant inactif de Src (0,2µg/ml) potentialise l’amplitude et la durée de l’activation de la cascade ERK lorsqu’un agoniste, DPDPE (1µM; 5 min), se lie aux récepteurs. Nous avons également démontré que de fortes concentrations d’inhibiteurs de Src (80 et 100µM de PP2 ou 1µg/ml d’ADN du mutant dominant négatif) bloquent la cascade des MAPK suivant la stimulation de DOR par l’agoniste DPDPE. Ces observations indiquent que Src a un effet biphasique sur l’activité de ERK : l’inhibition complète de Src inhibe l’activité de la cascade MAPK alors qu’une inhibition modérée potentialise cette même cascade. Nous pensons aussi que de fortes concentrations des bloqueurs de Src interfèrent avec l’activation de ERK alors que de faibles concentrations interfèrent avec la désensibilisation des récepteurs. Cette possibilité a été testée à l’aide d’essais d’accumulation d’AMPc qui visaient à évaluer l’effet des bloqueurs de Src (PP2, 20 µM; 1h) sur la désensibilisation induite par un agoniste. L'activation de DOR par DPDPE inhibe la production d’AMPc, préalablement stimulée par du forskolin, de façon dose-dépendante. Le maximum d'inhibition observé est de 61%, mais lors d’un prétraitement au DPDPE (1 µM, 30 min) l’inhibition maximale est réduite à 72% de l’inhibition initiale observée. Cependant, un prétraitement des cellules au PP2 (20µM pendant 1 heure) avant d’effectuer la désensibilisation protège contre cette désensibilisation. L’effet protecteur des bloqueurs de Src n’entraîne pas de changement au niveau de l’internalisation des DOR mais l’altération de leur internalisation via un mutant tronqué du DOR ou via un milieu sucré hypertonique (0.4M de saccharose) réduit cette protection. Ces données suggèrent alors que l’internalisation optimale du récepteur est nécessaire pour que l’effet protecteur prenne place. Nous concluons donc que Src contribue à la désensibilisation de DOR après que l’internalisation du DOR soit survenue.
Brain tumor and brain endothelial cells' response to ionizing radiation and phytochemical treatments
Resumo:
Le glioblastome multiforme (GBM) représente la tumeur cérébrale primaire la plus agressive et la plus vascularisée chez l’adulte. La survie médiane après le diagnostic est de moins d’un an en l’absence de traitement. Malheureusement, 90% des patients traités avec de la radiothérapie après la résection chirurgicale d’un GBM développent une récidive tumorale. Récemment, le traitement des GBM avec radiothérapie et témozolomide, un agent reconnu pour ses propriétés antiangiogéniques, a permis de prolonger la survie médiane à 14,6 mois. Des efforts sont déployés pour identifier des substances naturelles capables d’inhiber, de retarder ou de renverser le processus de carcinogenèse. Epigallocatechin-3-gallate (EGCG), un polyphénol retrouvé dans le thé vert, est reconnu pour ses propriétés anticancéreuses et antiangiogéniques. L’EGCG pourrait sensibiliser les cellules tumorales cérébrales et les cellules endothéliales dérivées des tumeurs aux traitements conventionnels. Le chapitre II décrit la première partie de ce projet de doctorat. Nous avons tenté de déterminer si l’EGCG pourrait sensibiliser la réponse des GBM à l’irradiation (IR) et si des marqueurs moléculaires spécifiques sont impliqués. Nous avons documenté que les cellules U-87 étaient relativement radiorésistantes et que Survivin, une protéine inhibitrice de l’apoptose, pourrait être impliquée dans la radiorésistance des GBM. Aussi, nous avons démontré que le pré-traitement des cellules U-87 avec de l’EGCG pourrait annuler l’effet cytoprotecteur d’une surexpression de Survivin et potentialiser l’effet cytoréducteur de l’IR. Au chapitre III, nous avons caractérisé l’impact de l’IR sur la survie de cellules endothéliales microvasculaires cérébrales humaines (HBMEC) et nous avons déterminé si l’EGCG pouvait optimiser cet effet. Bien que les traitements individuels avec l’EGCG et l’IR diminuaient la survie des HBMEC, le traitement combiné diminuait de façon synergique la survie cellulaire. Nous avons documenté que le traitement combiné augmentait la mort cellulaire, plus spécifiquement la nécrose. Au chapitre IV, nous avons investigué l’impact de l’IR sur les fonctions angiogéniques des HBMEC résistantes à l’IR, notamment la prolifération cellulaire, la migration cellulaire en présence de facteurs de croissance dérivés des tumeurs cérébrales, et la capacité de tubulogenèse. La voie de signalisation des Rho a aussi été étudiée en relation avec les propriétés angiogéniques des HBMEC radiorésistantes. Nos données suggèrent que l’IR altère significativement les propriétés angiogéniques des HBMEC. La réponse aux facteurs importants pour la croissance tumorale et l’angiogenèse ainsi que la tubulogenèse sont atténuées dans ces cellules. En conclusion, ce projet de doctorat confirme les propriétés cytoréductrices de l’IR sur les gliomes malins et propose un nouveau mécanisme pour expliquer la radiorésistance des GBM. Ce projet documente pour la première fois l’effet cytotoxique de l’IR sur les HBMEC. Aussi, ce projet reconnaît l’existence de HBMEC radiorésistantes et caractérise leurs fonctions angiogéniques altérées. La combinaison de molécules naturelles anticancéreuses et antiangiogéniques telles que l’EGCG avec de la radiothérapie pourrait améliorer l’effet de l’IR sur les cellules tumorales et sur les cellules endothéliales associées, possiblement en augmentant la mort cellulaire. Cette thèse supporte l’intégration de nutriments avec propriétés anticancéreuses et antiangiogéniques dans le traitement des gliomes malins pour sensibiliser les cellules tumorales et endothéliales aux traitements conventionnels.
Resumo:
La mort cellulaire programmée (PCD pour Programmed Cell Death) est un processus essentiel aux cellules. Le PCD a d’abord été caractérisé dans le développement cellulaire et peut être divisé en plusieurs groupes selon les caractéristiques observées. L’apoptose, un sous-groupe du PCD, est caractérisé par plusieurs distinctions morphologiques et signalétiques attribué tout d’abord aux organismes complexes pour son rôle dans le développement et dans le maintien de l’intégrité tissulaire. Depuis la dernière décennie, de nombreuses études font état de l’existence d’un programme apoptotique dans des organismes unicellulaires comme les levures. Ce programme apoptotique a surtout été étudié chez les levures Saccharomyces cerevisiae et Schizosaccharomyces pombe et partage certaines caractéristiques avec l’apoptose des mammifères. Par contre, l’apoptose associé aux levures est distinct à certains égards entre autre par l’absence de certains homologues présents chez les mammifères. L’intérêt au niveau de l’étude du phénomène apoptotique chez les levures est sans cesse grandissant par la facilité avec laquelle les levures peuvent être utilisées comme système modèle. L’apoptose peut être induit dans les cellules de différentes façons en réponse à des stimuli internes ou externes. L’accumulation de protéines mal repliées au niveau du réticulum endoplasmique (RE) causant un stress est un inducteur bien caractérisé de la voie apoptotique. La signalisation de l’apoptose dans un cas de stress au RE fait appel aux transducteurs des signaux de la voie du UPR ( Unfolded Protein Response). Récemment, il a été montré que la calnexine, une chaperone transmembranaire du RE connue et caractérisée surtout pour ses fonctions d’aide au repliement des protéines et au contrôle de qualité, joue un rôle dans la transduction du signal apoptotique en réponse au stress du RE chez mammifères. Le rôle de la calnexine dans ce cas consiste principalement en l’échafaudage pour le clivage par la caspase 8 de la protéine apoptotique Bap31. Nous avons tout d’abord démontré que le stress du RE et que la déficience en inositol, un précurseur essentiel de nombreuses molécules signalétiques, sont deux inducteurs de l’apoptose chez la levure S. pombe. Ces deux voies semblent induire l’apoptose par deux voies distinctes puisque seule la voie de la déficience en inositol induit l’apoptose de façon dépendante à la métacaspase Pca1p. La calnexine, essentielle à la viabilité chez la levure S. pombe, est impliquée dans ces deux phénomènes apoptotiques. L’apoptose induit par le stress du RE nécessite une version de la calnexine ancrée à la membrane du RE pour être optimal. De façon opposée, l’apoptose induit par une déficience en inositol nécessite la présence de la queue cytosolique ancrée à la membrane de la calnexine pour être retardé. Ces deux actions différentes imputables à une même protéine laisse croire à une double fonction pro et anti-apoptotique de celle-ci. Suite à la découverte de l’existence d’un clivage endogène de la calnexine en situation normale de croissance, un modèle a été élaboré expliquant les rôles distincts de la calnexine dans ces deux voies apoptotiques. Ce modèle fait état d’un rôle associé au clivage de la calnexine dans l’apoptose.
Resumo:
Il est reconnu, depuis une centaine d’années, que des désordres de la coagulation, regroupés sous le terme de coagulopathies, sont souvent associés au développement néoplasique. Pendant de nombreuses années, ces coagulopathies furent souvent reconnues comme une simple conséquence du développement du cancer. D’ailleurs, pour les cliniciens, l’apparition de ces anomalies sanguines constitue souvent le premier signe clinique d’un cancer occulte. Toutefois, l’étude approfondie du lien existant entre le système hémostatique et le cancer indique que différents facteurs hémostatiques vont interagir avec soit l’environnement tumoral ou soit la tumeur elle-même et influencer le développement du cancer. Au cours de nos travaux, nous avons porté une attention particulière à deux protéines jouant un rôle primordial dans l’hémostase. Le facteur tissulaire (TF) et l’inhibiteur du facteur tissulaire (TFPI) peuvent jouer des rôles pro- ou anti-néoplasique, et ce indépendamment de leurs fonctions hémostatiques normales. Dans le premier volet de cette thèse, nous avons étudié les propriétés antiangiogéniques de TFPI. L’angiogenèse, soit la formation de nouveaux vaisseaux sanguins à partir du réseau pré-existant, est reconnue comme étant une étape clée du développement tumoral. D’après nos travaux, le TFPI peut inhiber la formation de structures de type capillaire des cellules endothéliales (CEs) de la veine ombilicale humaine (HUVEC), et ce à une IC 50 de 5 nM, soit la concentration physiologique de l’inhibiteur. De plus, le TFPI bloque la migration des cellules endothéliales lorsque ces dernières sont stimulées par la sphingosine-1-phosphate (S1P), une molécule relâchée lors de l’activation des plaquettes sanguines. Cette inhibition de la migration cellulaire s’explique par l’effet du TFPI sur l’adhésion des CEs. En effet, TFPI inhibe la phosphorylation de deux protéines clées participant à la formation des complexes d’adhésion focales soit FAK (focal adhesion kinase) et PAX (paxilin). L’inhibition de ces deux protéines suggère qu’il y ait une réorganisation des complexes focaux, pouvant expliquer la perte d’adhérence. Finalement, des études de microscopie confocale démontrent que les cellules traitées au TFPI changent de morphologie au niveau du cytosquelette d’actine provoquant une désorganisation des structures migratoires (pseudopodes). Les effets du TFPI au niveau de la migration, de l’adhésion et de la morphologie cellulaire sont strictement spécifiques aux cellules endothéliales humaines, puisque aucun n’effet n’est observé en traitant des cellules cancéreuses de glioblastomes (GB) humains, qui sont normalement des tumeurs hautement vascularisées. En résumé, cette première étude démontre que le TFPI est un inhibiteur de l’angiogenèse. Dans le second volet de cette thèse, nous nous sommes intéressés aux différents rôles de TF, le principal activateur de la coagulation. Cette protéine est également impliquée dans le développement néoplasique et notamment celui des médulloblastomes (MB) chez l’enfant via des fonctions hémostatiques et non-hémostatiques. Nos travaux démontrent que l’expression de TF est induite par la voie de signalisation de HGF (hepatocyte growth factor) et de son récepteur Met. Cet effet de HGF/Met semble spécifique aux MB puisque HGF ne peut stimuler l’expression de TF au niveau des cellules cancéreuses de glioblastomes. TF, exprimé à la surface des cellules médulloblastiques (DAOY), est responsable de l’activité pro-thrombogénique de ces cellules, ainsi qu’un acteur important de la migration de ces cellules en réponse au facteur VIIa (FVIIa). De plus, en étudiant 18 spécimens cliniques de MB, nous avons établi un lien entre l’intensité d’expression de TF et de Met. L’importance de cette corrélation est également suggérée par l’observation que les cellules exprimant les plus forts taux de TF et de Met sont également les plus agressives en termes d’index de prolifération et de dissémination métastatiques. En résumé, ces travaux représentent le point de départ pour la mise au point de TF comme un marqueur diagnostique clinique dans les cas de tumeurs du cerveau pédiatriques. De plus, l’élucidation de la voie de signalisation moléculaire responsable de l’expression de TF permet de mieux comprendre la biologie et le fonctionnement de ces tumeurs et de relier le profil d’expression de TF aux phénotypes agressifs de la maladie. Il est reconnu que HGF peut également jouer un rôle protecteur contre l’apoptose. Dans le troisième volet de cette thèse, nous avons remarqué que cette protection est corrélée à l’expression de TF. En réduisant à néant l’expression de TF à l’aide de la technologie des ARN silencieux (siRNA), nous démontrons que HGF ne protège plus les cellules contre l’apoptose. Donc, TF médie l’activité anti-apoptotique de HGF. TF assume cette protection en inactivant la phosphorylation de p53 sur la sérine 15, empêchant ainsi la translocation de p53 au noyau. Finalement, l’expression de TF et son interaction avec le FVIIa, au niveau des cellules médulloblastiques favorise la survie de ces dernières et ce même si elles sont soumises à de fortes concentrations de médicaments couramment utilisées en cliniques. Ce troisième et dernier volet démontre l’implication de TF en tant que facteur impliqué dans la survie des cellules cancéreuses, favorisant ainsi le développement de la tumeur. Dans son ensemble, cette thèse vise à démontrer que les facteurs impliqués normalement dans des fonctions hémostatiques (TFPI et TF) peuvent contribuer à réguler le développement tumoral. Tout système physiologique et pathologique est dépendant d’un équilibre entre activateur et inhibiteur et la participation de TF et de TFPI à la régulation du développement néoplasique illustre bien cette balance délicate. Par sa contribution anti- ou pro-néoplasique le système hémostatique constitue beaucoup plus qu’une simple conséquence du cancer; il fait partie par l’action de TF des stratégies élaborées par les cellules cancéreuses pour assurer leur croissance, leur déplacement et leur survie, alors que TFPI tente de limiter la croissance tumorale en diminuant la vascularisation.
Resumo:
Le repliement des protéines est un processus cellulaire crucial impliquant plusieurs protéines dont la calnexine, une chaperone du réticulum endoplasmique. Notre laboratoire et un autre groupe avons démontré que la calnexine est essentielle à la viabilité de la levure Schizosaccharomyces pombe. Dans le cadre d’études structure-fonction portant sur cette protéine, nous avons découvert un phénomène permettant la viabilité des cellules en absence de la calnexine. Cet état, nommé Cin pour calnexine independence, est induit par un mutant de la calnexine dépourvu du domaine central hautement conservé (Δhcd_Cnx1p). La caractérisation de l’état Cin a révélé plusieurs caractéristiques particulières telle la dominance, sa transmission de façon non-Mendélienne à la progéniture méïotique et sa transmission par des extraits protéiques dépourvus d’acides nucléiques. Toutes ces propriétés suggèrent donc que l’état Cin est médié via un élément de type prion. Le gène cif1+, pour calnexin independence factor, a été isolé lors de criblages visant à identifier des gènes impliqués dans l’état Cin. Il encode pour une protéine orpheline dont la surexpression induit de façon stable un état de viabilité en l’absence de la calnexine. Cet état diffère génétiquement et phénotypiquement de l’état Cin induit par le mutant Δhcd_Cnx1p préalablement caractérisé, ce qui suggère deux voies parallèles de signalisation du phénomène Cin. Une caractérisation exhaustive de Cif1p a permis de démontrer qu’il ne s’agissait pas du prion responsable de l’état Cin, malgré que cette protéine possède certaines propriétés typiques des prions in vitro. Finalement, Cif1p est une protéine nucléolaire dont la bonne localisation est essentielle à sa capacité à induire l’état Cin. Ceci suggère une interaction entre la fonction essentielle de la calnexine et une fonction exécutée dans le nucléole. Lors d’études visant à élucider la fonction cellulaire de Cif1p, il a été établi qu’elle interagissait avec certaines protéines de la grosse sous-unité du ribosome telle la protéine L3. Cependant, Cif1p ne co-sédimente pas avec des sous-unités ribosomales assemblées, des ribosomes ou des polysomes. De plus, des cellules contenant une délétion génomique de cif1 voient leur contenu en ribosomes perturbé lors de la phase stationnaire. Il semble donc que Cif1p joue un rôle dans la biosynthèse des ribosomes lors de la phase stationnaire. Ce rôle spécifique à cette phase de croissance coincide avec un clivage de la portion N-terminale de Cif1p, clivage qui a lieu lors de l’entrée des cellules en phase stationnaire. De plus, des études effectuées récemment dans notre laboratoire proposent que la calnexine joue un rôle important dans la signalisation de l’apoptose, et ce particulièrement en phase stationnaire. Ainsi, une voie impliquant Cif1p, sa fonction nucléolaire dans la biosynthèse des ribosomes en phase stationnaire, la calnexine et la médiation de l’apoptose semble se dessiner. D’autres travaux, notamment sur la fonction exacte de Cif1p, le rôle de son clivage et les autres composantes impliquées dans le phénomène Cin nous permettront de dessiner un portrait plus complet de cette voie cellulaire inédite.