936 resultados para Signalisation AKT
Resumo:
Considering the increasing consumption of saturated fat and glucose in diets worldwide and its possible association to carcinogenesis, this investigation analysed the proliferation profile of nonmalignant human prostate epithelial cells after exposure to elevated levels of fat and glucose. PNT1A cells were cultured with palmitate (100 or 200 mu M) and/or glucose (450mg/dl) for 24 or 48 h. Treated cells were evaluated for viability test and cell proliferation (MTS assay). AKT and AMPK phosphorylation status were analysed by Western blotting. After 24 h of high-fat alone or associated with high-glucose treatment, there was an increase in AMPK and AKT activation associated to unchanged MTS-cell proliferation. Following 48 h of high-fat but not high-glucose alone, cells decreased AMPK activation and maintained elevated AKT levels. These data were associated to increased cell proliferation after further high-fat treatment. After longer high-fat exposure, MTS revealed that cells remained proliferating. High-glucose alone or associated to high-fat treatment was not able to increase cell proliferation and AKT activation. A high-fat medium containing 100 mu M of palmitate stimulates proliferation in PNT1A cells by decreasing the activation of AMPK and increasing activation of AKT after longer exposure time. These findings improve the knowledge about the negative effect of high levels of this saturated fatty acid on proliferative disorders of prostate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.
Resumo:
Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 mu M 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 mu M ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five mu M ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5X), perifosine (3X), and arsenic trioxide (8.5X). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019661, 1898-1912, 2012.
Resumo:
The heart responds to sustained overload by hypertrophic growth in which the myocytes distinctly thicken or elongate on increases in systolic or diastolic stress. Though potentially adaptive, hypertrophy itself may predispose to cardiac dysfunction in pathological settings. The mechanisms underlying the diverse morphology and outcomes of hypertrophy are uncertain. Here we used a focal adhesion kinase (FAK) cardiac-specific transgenic mice model (FAK-Tg) to explore the function of this non-receptor tyrosine kinase on the regulation of myocyte growth. FAK-Tg mice displayed a phenocopy of concentric cardiac hypertrophy, reflecting the relative thickening of the individual myocytes. Moreover, FAK-Tg mice showed structural, functional and molecular features of a compensated hypertrophic growth, and preserved responses to chronic pressure overload. Mechanistically, FAK overexpression resulted in enhanced myocardial FAK activity, which was proven by treatment with a selective FAK inhibitor to be required for the cardiac hypertrophy in this model. Our results indicate that upregulation of FAK does not affect the activity of Src/ERK1/2 pathway, but stimulated signaling by a cascade that encompasses PI3K, AKT, mTOR, S6K and rpS6. Moreover, inhibition of the mTOR complex by rapamycin extinguished the cardiac hypertrophy of the transgenic FAK mice. These findings uncover a unique role for FAK in regulating the signaling mechanisms that governs the selective myocyte growth in width, likely controlling the activity of PI3K/AKT/mTOR pathway, and suggest that FAK activation could be important for the adaptive response to increases in cardiac afterload. This article is part of a Special Issue entitled "Local Signaling in Myocytes". (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Resumo:
Background: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral mu-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K gamma/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K gamma null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K gamma (congruent to 43%). Conclusions: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K gamma/AKT signaling. This study extends a previously study of our group suggesting that PI3K gamma/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.
Resumo:
Objectives: The aim of this study was to evaluate the immunoexpression of TWIST and p-Akt proteins in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC), correlating their expressions with the histological features of the lesions. Study design: Immunohistochemical studies were carried out on 10 normal oral epithelium, 30 OL and 20 OSCC formalin-fixed, paraffin-embedded tissue samples. Immunoperoxidase reactions for TWIST and p-Akt proteins were applied on the specimens and the positivity of the reactions was calculated for 1000 epithelial cells. Results: Kruskal-Wallis and Dunn's post tests revealed a significant difference in TWIST and p-Akt immunoexpression among normal oral mucosa, OL and OSCC. In addition, a significant positive correlation was found between TWIST and p-Akt expressions according to the Pearson's correlation test. Conclusions: The results obtained in the current study suggest that TWIST and p-Akt may participate of the multi-step process of oral carcinogenesis since its early stages.
Resumo:
Background: Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. Objective: The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. Research Design and Methods: We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. Results and Conclusions: Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1 alpha in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes.
Resumo:
Insulin and the inhibition of the reninangiotensin system have independent benefits for ischemiareperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemiareperfusion. Isolated hearts were perfused (Langendorff technique) with KrebsHenseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was similar to 31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (similar to 2.2 times) in all groups vs. group KH and was similar to 35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was similar to 28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects.