926 resultados para Signal Processing, EMD, Thresholding, Acceleration, Displacement, Structural Identification
Resumo:
A review of the main techniques that have been proposed for temporal processing of optical pulses that are the counterpart of the well-known spatial arrangements will be presented. They are translated to the temporal domain via the space-time duality and implemented with electrooptical phase and amplitude modulators and dispersive devices. We will introduce new variations of the conventional approaches and we will focus on their application to optical communications systems
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.
Resumo:
A nonlinear analysis of an elastic tube subjected to gravity forces and buoyancy pressure is carried out. An update lagrangian formulation is used. The structural analysis efficiency in terms of computer time and accuracy, has been improved when load stiffness matrices have been introduced. In this way the follower forces characteristics such as their intensity and direction changes can be well represented. A sensitivity study of different involved variables on the final deformed pipeline shape is carried out.
Resumo:
In this work we review some earlier distributed algorithms developed by the authors and collaborators, which are based on two different approaches, namely, distributed moment estimation and distributed stochastic approximations. We show applications of these algorithms on image compression, linear classification and stochastic optimal control. In all cases, the benefit of cooperation is clear: even when the nodes have access to small portions of the data, by exchanging their estimates, they achieve the same performance as that of a centralized architecture, which would gather all the data from all the nodes.
Resumo:
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper
Resumo:
Magnetoencephalographic responses recorded from auditory cortex evoked by brief and rapidly successive stimuli differed between adults with poor vs. good reading abilities in four important ways. First, the response amplitude evoked by short-duration acoustic stimuli was stronger in the post-stimulus time range of 150–200 ms in poor readers than in normal readers. Second, response amplitude to rapidly successive and brief stimuli that were identical or that differed significantly in frequency were substantially weaker in poor readers compared with controls, for interstimulus intervals of 100 or 200 ms, but not for an interstimulus interval of 500 ms. Third, this neurological deficit closely paralleled subjects’ ability to distinguish between and to reconstruct the order of presentation of those stimulus sequences. Fourth, the average distributed response coherence evoked by rapidly successive stimuli was significantly weaker in the β- and γ-band frequency ranges (20–60 Hz) in poor readers, compared with controls. These results provide direct electrophysiological evidence supporting the hypothesis that reading disabilities are correlated with the abnormal neural representation of brief and rapidly successive sensory inputs, manifested in this study at the entry level of the cortical auditory/aural speech representational system(s).
Resumo:
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Bibliography: p. [12]
Resumo:
This paper describes the design of a Multiple Input Multiple Output testbed for assessing various MIMO transmission schemes in rich scattering indoor environments. In the undertaken design, a Field Programmable Gate Array (FPGA) board is used for fast processing of Intermediate Frequency signals. At the present stage, the testbed performance is assessed when the channel emulator between transmitter and receiver modules is introduced. Here, the results are presented for the case when a 2x2 Alamouti scheme for space time coding/decoding at transmitter and receiver is used. Various programming details of the FPGA board along with the obtained simulation results are reported