863 resultados para Shrimp aquaculture in India,
Resumo:
A product is reflects the constraints, beliefs and aspirations of a society. Product development both influences and is influenced by the growth of a society and its economy. India is a fast growing economy. We use a brief historical, socioeconomic account of India as a backdrop to detect the drivers and roadblocks to its economic and social growth. In this context, current and future trends of PD practice, education and research are sketched. Products are taken as artefacts of the act of designing, without limiting to only those created by industry in a market-economic context.
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Many of the research institutions and universities across the world are facilitating open-access (OA) to their intellectual outputs through their respective OA institutional repositories (IRs) or through the centralized subject-based repositories. The registry of open access repositories (ROAR) lists more than 2850 such repositories across the world. The awareness about the benefits of OA to scholarly literature and OA publishing is picking up in India, too. As per the ROAR statistics, to date, there are more than 90 OA repositories in the country. India is doing particularly well in publishing open-access journals (OAJ). As per the directory of open-access journals (DOAJ), to date, India with 390 OAJs, is ranked 5th in the world in terms of numbers of OAJs being published. Much of the research done in India is reported in the journals published from India. These journals have limited readership and many of them are not being indexed by Web of Science, Scopus or other leading international abstracting and indexing databases. Consequently, research done in the country gets hidden not only from the fellow countrymen, but also from the international community. This situation can be easily overcome if all the researchers facilitate OA to their publications. One of the easiest ways to facilitate OA to scientific literature is through the institutional repositories. If every research institution and university in India set up an open-access IR and ensure that copies of the final accepted versions of all the research publications are uploaded in the IRs, then the research done in India will get far better visibility. The federation of metadata from all the distributed, interoperable OA repositories in the country will serve as a window to the research done across the country. Federation of metadata from the distributed OAI-compliant repositories can be easily achieved by setting up harvesting software like the PKP Harvester. In this paper, we share our experience in setting up a prototype metadata harvesting service using the PKP harvesting software for the OAI-compliant repositories in India.
Resumo:
Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is presented and applied to India. Energy use and fuel choice is determined for five end-use functions (cooking, water heating, space heating, lighting and appliances) and for five different income quintiles in rural and urban areas. The paper specifically explores the consequences of different assumptions for income distribution and rural electrification on residential sector energy use and CO(2) emissions, finding that results are clearly sensitive to variations in these parameters. As a result of population and economic growth, total Indian residential energy use is expected to increase by around 65-75% in 2050 compared to 2005, but residential carbon emissions may increase by up to 9-10 times the 2005 level. While a more equal income distribution and rural electrification enhance the transition to commercial fuels and reduce poverty, there is a trade-off in terms of higher CO(2) emissions via increased electricity use. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Reducing emissions from deforestation and forest degradation (REDD+) is considered as an important mechanism under the UNFCCC aimed at mitigating climate change. The Cancun Agreement on REDD mechanism has paved the way for designing and implementation of REDD+ activities, to assist countries experiencing large-scale deforestation and forest degradation. Contrary to the general perception, the present analysis shows that India is currently experiencing deforestation and forest degradation. According to the latest assessment of the Forest Survey of India, the net annual loss of forests is estimated to be 99,850 ha during the period 2007-2009, even though the total area under forests has increased. The REDD+ mechanism aims to provide financial incentives for reducing deforestation and forest degradation. India, despite having robust legislations, policies and remote sensing capabilities, is not ready to benefit from the emerging REDD+ mechanism, with potential flow of large financial benefits to rural and forest-dependent communities from international financial sources.
Resumo:
The article attempts to present analysis based on the provisional results of the Census 2011. While there is no doubt that the human social organization of the country is undergoing a transition, the nature of growth however is subject to the lens through which this is viewed. Noting the dichotomy of urban and rural definitions, we question the rationality of the ‘urban’ definition and its relevance.
Resumo:
Background: India has the third largest HIV-1 epidemic with 2.4 million infected individuals. Molecular epidemiological analysis has identified the predominance of HIV-1 subtype C (HIV-1C). However, the previous reports have been limited by sample size, and uneven geographical distribution. The introduction of HIV-1C in India remains uncertain due to this lack of structured studies. To fill the gap, we characterised the distribution pattern of HIV-1 subtypes in India based on data collection from nationwide clinical cohorts between 2007 and 2011. We also reconstructed the time to the most recent common ancestor (tMRCA) of the predominant HIV-1C strains. Methodology/Principal Findings: Blood samples were collected from 168 HIV-1 seropositive subjects from 7 different states. HIV-1 subtypes were determined using two or three genes, gag, pol, and env using several methods. Bayesian coalescent-based approach was used to reconstruct the time of introduction and population growth patterns of the Indian HIV-1C. For the first time, a high prevalence (10%) of unique recombinant forms (BC and A1C) was observed when two or three genes were used instead of one gene (p<0.01; p = 0.02, respectively). The tMRCA of Indian HIV-1C was estimated using the three viral genes, ranged from 1967 (gag) to 1974 (env). Pol-gene analysis was considered to provide the most reliable estimate 1971, (95% CI: 1965-1976)]. The population growth pattern revealed an initial slow growth phase in the mid-1970s, an exponential phase through the 1980s, and a stationary phase since the early 1990s. Conclusions/Significance: The Indian HIV-1C epidemic originated around 40 years ago from a single or few genetically related African lineages, and since then largely evolved independently. The effective population size in the country has been broadly stable since the 1990s. The evolving viral epidemic, as indicated by the increase of recombinant strains, warrants a need for continued molecular surveillance to guide efficient disease intervention strategies.