991 resultados para Shear flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The nature of the annular variability and eddy forcing depends on the time scale. At low frequencies the zonal flow and baroclinic eddies are in quasi equilibrium and anomalies propagate poleward. The eddies are shown primarily to reinforce the anomalous state and are closely balanced by the linear damping, leaving slow evolution as a residual. At high frequencies the flow is strongly evolving and anomalies are initiated on the poleward side of the tropospheric jet and propagate equatorward. The eddies are shown to drive this evolution strongly: eddy location and amplitude reflect the past baroclinicity, while eddy feedback on the zonal flow may be interpreted in terms of wave breaking associated with baroclinic life cycles in lateral shear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of the eddy variability around the 25°S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South Equatorial Current (SEC) between 15° and 20°S. The shallow, eastward flowing South Indian Ocean Countercurrent (SICC) extends above the deep reaching, westward flowing SEC to 95°E around the latitude of the high variability band. Applying a two-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5–6 times/year) and wavelengths (290–470 km) of the unstable modes are close to observations of the mesoscale variability derived from altimetry data. It is likely then that Rossby wave variability locally generated in the subtropical South Indian Ocean by baroclinic instability is the origin of the eddy variability around 25°S as seen, for example, in satellite altimetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The changes that occur with age in the distribution of atherosclerotic lesions around arterial branch points challenge accepted theories relating disease to haemodynamic stresses. We investigated whether flow near branch points changes with age in a way that can account for the different lesion distributions. Flow around 20 branches from immature and mature aortas was investigated by examining the length:width ratio and orientation of endothelial nuclei; these properties depend on the magnitude and direction of near-wall flows, respectively. There were significant changes in the pattern of nuclear shape with age, consistent with a reversal in the pattern of shear around branches. In control regions away from branches, there were no such changes. The role of haemodynamic stresses in atherogenesis may require re-evaluation in the light of these results. (C) 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The changes that occur with age in the distribution of atherosclerotic lesions around arterial branch points challenge accepted theories relating disease to haemodynamic stresses. We investigated whether flow near branch points changes with age in a way that can account for the different lesion distributions. Flow around 20 branches from immature and mature aortas was investigated by examining the length:width ratio and orientation of endothelial nuclei; these properties depend on the magnitude and direction of near-wall flows, respectively. There were significant changes in the pattern of nuclear shape with age, consistent with a reversal in the pattern of shear around branches. In control regions away from branches, there were no such changes. The role of haemodynamic stresses in atherogenesis may require re-evaluation in the light of these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model of orographic gravity wave drag due to sheared flow past elliptical mountains is developed. The model extends the domain of applicability of the well-known Phillips model to wind profiles that vary relatively slowly in the vertical, so that they may be treated using a WKB approximation. The model illustrates how linear processes associated with wind profile shear and curvature affect the drag force exerted by the airflow on mountains, and how it is crucial to extend the WKB approximation to second order in the small perturbation parameter for these effects to be taken into account. For the simplest wind profiles, the normalized drag depends only on the Richardson number, Ri, of the flow at the surface and on the aspect ratio, γ, of the mountain. For a linear wind profile, the drag decreases as Ri decreases, and this variation is faster when the wind is across the mountain than when it is along the mountain. For a wind that rotates with height maintaining its magnitude, the drag generally increases as Ri decreases, by an amount depending on γ and on the incidence angle. The results from WKB theory are compared with exact linear results and also with results from a non-hydrostatic nonlinear numerical model, showing in general encouraging agreement, down to values of Ri of order one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using linear theory, it is shown that, in resonant flow over a 2D mountain ridge, such as exists when a layer of uniform wind is topped by an environmental critical level, the conditions for internal gravity-wave breaking are different from those determined in previous studies for non-resonant flows. For Richardson numbers in the shear layer not exceeding 2.25, two zones of flow overturning exist, respectively below and downstream and above and upstream of the expected locations. Flow overturning occurs for values of the dimensionless height of the ridge smaller than those required for a uniform wind profile. These results may have implications for the physical understanding of high-drag states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri21, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid-distortion model of Hunt & Graham (1978) for the initial distortion of turbulence by a flat boundary is extended to account fully for viscous processes. Two types of boundary are considered: a solid wall and a free surface. The model is shown to be formally valid provided two conditions are satisfied. The first condition is that time is short compared with the decorrelation time of the energy-containing eddies, so that nonlinear processes can be neglected. The second condition is that the viscous layer near the boundary, where tangential motions adjust to the boundary condition, is thin compared with the scales of the smallest eddies. The viscous layer can then be treated using thin-boundary-layer methods. Given these conditions, the distorted turbulence near the boundary is related to the undistorted turbulence, and thence profiles of turbulence dissipation rate near the two types of boundary are calculated and shown to agree extremely well with profiles obtained by Perot & Moin (1993) by direct numerical simulation. The dissipation rates are higher near a solid wall than in the bulk of the flow because the no-slip boundary condition leads to large velocity gradients across the viscous layer. In contrast, the weaker constraint of no stress at a free surface leads to the dissipation rate close to a free surface actually being smaller than in the bulk of the flow. This explains why tangential velocity fluctuations parallel to a free surface are so large. In addition we show that it is the adjustment of the large energy-containing eddies across the viscous layer that controls the dissipation rate, which explains why rapid-distortion theory can give quantitatively accurate values for the dissipation rate. We also find that the dissipation rate obtained from the model evaluated at the time when the model is expected to fail actually yields useful estimates of the dissipation obtained from the direct numerical simulation at times when the nonlinear processes are significant. We conclude that the main role of nonlinear processes is to arrest growth by linear processes of the viscous layer after about one large-eddy turnover time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method is presented for obtaining rigorous upper bounds on the finite-amplitude growth of instabilities to parallel shear flows on the beta-plane. The method relies on the existence of finite-amplitude Liapunov (normed) stability theorems, due to Arnol'd, which are nonlinear generalizations of the classical stability theorems of Rayleigh and Fjørtoft. Briefly, the idea is to use the finite-amplitude stability theorems to constrain the evolution of unstable flows in terms of their proximity to a stable flow. Two classes of general bounds are derived, and various examples are considered. It is also shown that, for a certain kind of forced-dissipative problem with dissipation proportional to vorticity, the finite-amplitude stability theorems (which were originally derived for inviscid, unforced flow) remain valid (though they are no longer strictly Liapunov); the saturation bounds therefore continue to hold under these conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial structure of beta-plane Rossby waves in a sinusoidal basic zonal flow U 0cos(γ,y) is determined analytically in the (stable) asymptotic limit of weak shear, U 0γ2 0/β≈1. The propagating neutral normal modes are found to take their greatest amplitude in the region of maximum westerly flow, while their most rapid phase variation is achieved in the region of maximum easterly flow. These results are shown to be consistent with what is obtained by ray-tracing methods in the limit of small meridional disturbance wavelength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The question of linear sheared-disturbance evolution in constant-shear parallel flow is here reexamined with regard to the temporary-amplification phenomenon noted first by Orr in 1907. The results apply directly to Rossby waves on a beta-plane, and are also relevant to the Eady model of baroclinic instability. It is shown that an isotropic initial distribution of standing waves maintains a constant energy level throughout the shearing process, the amplification of some waves being precisely balanced by the decay of the others. An expression is obtained for the energy of a distribution of disturbances whose wavevectors lie within a given angular wedge and an upper bound derived. It is concluded that the case for ubiquitous amplification made in recent studies may have been somewhat overstated: while carefully-chosen individual Fourier components can amplify considerably before they decay. a general distribution will tend to exhibit little or no amplification.