986 resultados para Shear bond strengths


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: The aim of this study was to investigate the influence of Nd:YAG laser on the shear bond strength to enamel and dentin of total and self-etch adhesives when the laser was applied over the adhesives, before they were photopolymerized, in an attempt to create a new bonding layer by dentin-adhesive melting.Material and Methods: One-hundred twenty bovine incisors were ground to obtain flat surfaces. Specimens were divided into two substrate groups (n=60): substrate E (enamel) and substrate D (dentin). Each substrate group was subdivided into four groups (n=15), according to the surface treatment accomplished: X (Xeno III self-etching adhesive, control), XL (Xeno III + laser Nd:YAG irradiation at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental), S (acid etching + Single Bond conventional adhesive, Control), and SL (acid etching + Single Bond + laser Nd:YAG at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental). The bonding area was delimited with 3-mm-diameter adhesive tape for the bonding procedures. Cylinders of composite were fabricated on the bonding area using a Teflon matrix. The teeth were stored in water at 37 degrees C/48 h and submitted to shear testing at a crosshead speed of 0.5 mm/min in a universal testing machine. Results were analyzed with three-way analysis of variance (ANOVA; substrate, adhesive, and treatment) and Tukey tests (alpha=0.05). ANOVA revealed significant differences for the substrate, adhesive system, and type of treatment: lased or unlased (p<0.05). The mean shear bond strength values (MPa) for the enamel groups were X=20.2 +/- 5.61, XL=23.6 +/- 4.92, S=20.8 +/- 4.55, SL=22.1 +/- 5.14 and for the dentin groups were X=14.1 +/- 7.51, XL=22.2 +/- 6.45, S=11.2 +/- 5.77, SL=15.9 +/- 3.61. For dentin, Xeno III self-etch adhesive showed significantly higher shear bond strength compared with Single Bond total-etch adhesive; Nd:YAG laser irradiation showed significantly higher shear bond strength compared with control (unlased).Conclusion: Nd:YAG laser application prior to photopolymerization of adhesive systems significantly increased the bond strength to dentin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of Er:YAG and Nd:YAG lasers on the shear bond strength of composite resin to dentin. The coronal portion of 56 human molars was divided into three parts, and the dentin thickness was standardized at 2 mm. A 3-mm hole was marked in the center of each tooth with sealing tape paper. The specimens (n = 14) were then divided into four groups: (1) acid etching + Single Bond (SB) (control), (2) acid etching + SB + Nd: YAG laser irradiation (before adhesive curing), (3) thermal etching with the Er: YAG laser + SB, and (4) thermal etching with the Er: YAG laser + SB + Nd: YAG laser irradiation (before adhesive curing). A composite resin cylinder was built into the delimited area for conducting the shear bond strength test on the universal testing machine. The means +/- standard deviations were: group 1, 17.05 +/- 4.15 MPa; group 2, 16.90 +/- 3.36 MPa; group 3, 12.12 +/- 3.85 MPa; and group 4, 12.92 +/- 2.73 MPa. Groups 1 and 2 presented significantly higher values than groups 3 and 4. It was concluded that conventional etching with 37% phosphoric acid yielded significantly higher bond strength values compared to thermal etching with the Er:YAG laser. The Nd:YAG laser did not significantly influence the bond strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose was to evaluate the effect of acid etching time on the bond strength of a simplified etch-and-rinse adhesive system to noncarious and caries-affected dentin of primary and permanent teeth. Methods: Twenty-four extracted primary and permanent teeth were divided into three groups, according to the acid etching time. Four teeth from each group were exposed to a microbiological caries-inducing protocol. After caries removal, noncarious and caries-affected dentin surfaces were etched with 37 percent phosphoric acid for five, 10, or 15 seconds prior to the application of Prime & Bond NT adhesive. Crowns were restored with resin composite and prepared for microtensile testing. Data were submitted to Kruskal-Wallis and Mann-Whitney tests (á=0.05). Results: Higher bond strengths were obtained for noncarious dentin vs. cariesaffected dentin for both primary and permanent teeth. Reducing the acid etching time from 15 to five seconds did not affect the bond strength to caries-affected or noncarious dentin in primary teeth. For permanent teeth, lower bond strength values were observed when the noncarious dentin was etched for five seconds, while no difference was seen between 10 and 15 seconds. Conclusions: For Prime & Bond NT, the etching of dentin for five seconds could be recommended for primary teeth, while 10 seconds would be the minimum time for permanent teeth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this in vitro study was to evaluate the effect of air-abrasion/zirconia sintering order on the yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) surface characterization (roughness, morphology, and phase transformation), flexural strength (FS), and shear bond strength (SBS) to a resin cement. Y-TZP specimens were air abraded with 50-μm Al2O3 particles after (AS), before (BS), or before and after zirconia sintering (BAS). For roughness (Ra), 30 block specimens (12×12×3.0 mm; n=10) had their surfaces analyzed by a profilometer. Next, on the air-abraded surfaces of these specimens, composite resin discs (n=30) were bonded with RelyX ARC. The bonded specimens were stored for 24 hours in distilled water at 37°C before shear testing. Failure mode was determined with a stereomicroscope (20×). The surface morphology (n=2) was evaluated by SEM (500×). For the four-point flexural strength test (EMIC DL2000), 39 bar-shaped specimens (20×4.0×1.2 mm; n=13) were air abraded according to the three conditions proposed, and an additional group (nonabraded) was evaluated (n=13). The quantitative analysis of phase transformation (n=1) was completed with Rietveld refinement with X-ray diffraction data. Ra (μm) and SBS (MPa) data were analyzed by one-way analysis of variance (ANOVA) and the Tukey test (α=0.05). Pearson correlation analysis was used to determine if there was a correlation between roughness and SBS. For FS (MPa) data, one-way ANOVA and the Dunnett C-test (α=0.05) were used. The air-abrasion/zirconia sintering order influenced significantly (p<0.001) Ra, SBS, and FS. The BS and AS groups presented the highest (1.3 μm) and the lowest (0.7 μm) Ra. The highest SBS (7.0 MPa) was exhibited by the BAS group, followed by the AS group (5.4 MPa) and finally by the BS group (2.6 MPa). All groups presented 100% adhesive failure. A weak correlation (r=−0.45, p<0.05) was found between roughness and SBS. The air-abrasion/zirconia sintering order provided differences in the surface morphology. The nonabraded (926.8 MPa) and BS (816.3 MPa) groups exhibited statistically similar FS values but lower values than the AS (1249.1 MPa) and BAS (1181.4 MPa) groups, with no significant difference between them. The nonabraded, AS, BS, and BAS groups exhibited, respectively, percentages of monoclinic phase of 0.0 wt%, 12.2 wt%, 0.0 wt%, and 8.6 wt%. The rougher surface provided by the air-abrasion before zirconia sintering may have impaired the bonding with the resin cement. The morphological patterns were consistent with the surface roughness. Considering the short-term SBS and FS, the BAS group exhibited the best performance. Air abrasion, regardless of its performance order, provides tetragonal to monoclinic transformation, while sintering tends to zero the monoclinic phase content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. Materials and Methods: One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photoactivated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). Results: No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). Conclusion: The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is little information regarding bond strengths of polyglass to metal alloys. This study evaluated the influence of bonding system on shear bond strength of a composite resin (Artglass/Heraeus Kulzer) to cast titanium (Ti). Twenty metallic structures (4mm in diameter, 5mm thick) of titanium grade I were cast shaped and abraded with 250mm aluminum oxide and separated into two groups. For each group was applied one bonding system (Siloc or Retention Flow) before opaque and dentin polymer superposition. This procedure was managed using teflon matrices. They were manipulated and polymerized according to the manufacturer's recommendations. The samples were stored in distilled water for 24 hours at 37º and thermocycled (5º and 55ºC/500 cycles). Shear bond strength tests were performed by using an Instron Universal testing machine at a crosshead speed of 5mm/min. Results were analyzed statistically with one-way ANOVA (a=0,5) and they indicated that the Retention Flow system was statistically better than Siloc (20.74 MPa and 11.65 MPa , respectively). It was possible to conclude that the bonding agent influenced the adhesion between polymer and cast titanium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of Er:YAG and Nd:YAG lasers on the shear bond strength of composite resin to dentin. The coronal portion of 56 human molars was divided into three parts, and the dentin thickness was standardized at 2 mm. A 3-mm hole was marked in the center of each tooth with sealing tape paper. The specimens (n = 14) were then divided into four groups: (1) acid etching + Single Bond (SB) (control), (2) acid etching + SB + Nd:YAG laser irradiation (before adhesive curing), (3) thermal etching with the Er:YAG laser + SB, and (4) thermal etching with the Er:YAG laser + SB + Nd:YAG laser irradiation (before adhesive curing). A composite resin cylinder was built into the delimited area for conducting the shear bond strength test on the universal testing machine. The means ± standard deviations were: group 1, 17.05 ± 4.15 MPa; group 2, 16.90 ± 3.36 MPa; group 3, 12.12 ± 3.85 MPa; and group 4, 12.92 ± 2.73 MPa. Groups 1 and 2 presented significantly higher values than groups 3 and 4. It was concluded that conventional etching with 37% phosphoric acid yielded significantly higher bond strength values compared to thermal etching with the Er:YAG laser. The Nd:YAG laser did not significantly influence the bond strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of self-adhesive and self-etching resin cements on the bond strength of nonmetallic posts in different root regions. Sixty single-rooted human teeth were decoronated, endodontically treated, post-space prepared, and divided into six groups. Glass-fiber (GF) posts (Exacto, Angelus) and fiber-reinforced composite (FRC) posts (EverStick, StickTeck) were cemented with self-adhesive resin cement (Breeze) (SA) (Pentral Clinical) and self-etching resin cement (Panavia-F) (SE) (Kuraray). Six 1-mm-thick rods were obtained from the cervical (C), middle (M), and apical (A) regions of the roots. The specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. Microtensile bond strength data were analyzed with two-way ANOVA and Tukey's tests. Means (and SD) of the MPa were: GF/SA/C: 14.32 (2.84), GF/SA/M: 10.69 (2.72), GF/SA/A: 6.77 (2.17), GF/SE/C: 11.56 (4.13), GF/SE/M: 6.49 (2.54), GF/SE/A: 3.60 (1.29), FRC/SA/C: 16.89 (2.66), FRC/SA/M: 13.18 (2.19), FRC/SA/A: 8.45 (1.77), FRC/SE/C: 13.69 (3.26), FRC/SE/M: 9.58 (2.23), FRC/SE/A: 5.62 (2.12). The difference among the regions was statistically significant for all groups (p < 0.05). The self-adhesive resin cement showed better results than the self-etching resin cement when compared to each post (p < 0.05). No statistically significant differences in bond strengths of the resin cements when comparable to each post (p > 0.05). The bond strength values were significantly affected by the resin cement and the highest values were found for self-adhesive resin cement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To evaluate the bond strength between two types of acrylic resin teeth and a microwave denture base resin after immersion in disinfectant solutions for 180 days. Eighty specimens made of acrylic resin teeth (Biotone and Biotone IPN) attached to a microwave polymerized denture base resin (Nature-Cryl MC) were divided into eight groups (n = 10) according to the treatment (distilled water-control, 2% chlorhexidine digluconate, 1% sodium hypochlorite and sodium perborate solution-Corega Tabs). The shear strength tests (MPa) were carried out using a universal testing machine with a 0.5 mm/min speed. Data analysis was performed using ANOVA and multiple comparison Student-Newman-Keuls post hoc test (α = 0.05). Biotone IPN showed similar results among the groups (distilled water, 8.25 ± 1.81 MPa; chlorhexidine, 7.81 ± 3.34 MPa; hypochlorite, 7.75 ± 3.72 MPa; and Corega Tabs, 7.58 ± 2.27 MPa, whereas Biotone showed significantly lower shear bond strength values for the groups immersed in Corega Tabs (5.25 ± 3.27 MPa) and chlorhexidine (6.08 ± 2.35 MPa). Soaking the dentures in 1% sodium hypochlorite could be recommended as a disinfectant solution for dentures fabricated with conventional acrylic resin denture teeth and microwave denture base resin. For dentures fabricated with IPN teeth and microwave denture base resin, all the soaking solutions evaluated in this study could be suggested to denture wearers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent orthodontic bonding materials have aimed to reduce the working time of the clinician, by simplifying the acid etching procedure by applying self-etching primer adhesive systems. However, the adhesion quality of these materials still demands investigation. Thus, the present study aimed to evaluate the bond strengths of three different adhesive systems. A hundred and eighty bovine lower incisors were cut and embebbed in acrylic resin matrices, in which orthodontic brackets were bonded with Transbond XT (2n = 60), Transbond XT Self Etching Primer (2n = 60) e Tyrian (2n = 60). For each composite, bond strength tests were executed immediately (n = 30) and 24 hours (n = 30) after the bonding, in the assay machine Versat 2000 (Pantec), by applying 500 Kgf of load at 1mm/min of velocity. Transbond XT, Transbond XT Self Etching Primer and Tyrian presented, respectively, average values of bond strength of 7.43, 7.09 and 3.41 MPa at the time immediately, and 7.42, 8.81 and 5.35 MPa at 24 hours after the bonding, where differences were statistically significant at 5% between Tyrian and Transbond groups at both observation times. It was concluded that Tyrian was the material that presented significant lower bond strength with regard to Transbond groups that were similar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The test groups were experimental zirconia, Zirkonzahn zirconia, and Schuetz zirconia. Blocks of partially sintered zirconia were cut into disks (n=20) and then veneered with a feldspathic porcelain. Half of the specimens from each group (n=10) were incubated in 37°C water for 24 hours, and the other half were thermocycled. All the specimens were then subjected to shear testing. The fractured areas were analyzed with optical stereomicroscopy and classified as adhesive, cohesive, or an adhesive-cohesive failure. Spectral patterns were examined to detect bands related to the zirconia and feldspathic porcelain phases. The shear strength data were submitted to 2-way ANOVA. Results No significant differences in shear bond strength were observed among the 3 groups, regardless of whether or not the specimens were thermocycled. Adhesive failures were the most prevalent types of failure (70%). Raman spectra were clearly distinguished for all the materials, which showed the presence of tetragonal and monoclinic phases. Conclusions The controlled production of the experimental zirconia did not influence the results of the bond strength. Raman analysis suggested a process of interdiffusion by the presence of peaks associated with the zirconia and feldspathic ceramics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.