981 resultados para Set functions.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This publication is the culmination of a 2 year Australian Learning and Teaching Council's Project Priority Programs Research Grant which investigates key issues and challenges in developing flexible guidelines lines for best practice in Australian Doctoral and Masters by Research Examination, encompassing the two modes of investigation, written and multi-modal (practice-led/based) theses, their distinctiveness and their potential interplay. The aims of the project were to address issues of assessment legitimacy raised by the entry of practice-orientated dance studies into Australian higher degrees; examine literal embodiment and presence, as opposed to cultural studies about states of embodiment; foreground the validity of questions around subjectivity and corporeal intelligence/s and the reliability of artistic/aesthetic communications, and finally to celebrate ‘performance mastery’(Melrose 2003) as a rigorous and legitimate mode of higher research. The project began with questions which centred around: the functions of higher degree dance research; concepts of 'master-ness’ and ‘doctorateness’; the kinds of languages, structures and processes which may guide candidates, supervisors, examiners and research personnel; the purpose of evaluation/examination; addressing positive and negative attributes of examination. Finally the study examined ways in which academic/professional, writing/dancing, tradition/creation and diversity/consistency relationships might be fostered to embrace change. Over two years, the authors undertook a qualitative national study encompassing a triangulation of semi-structured face to face interviews and industry forums to gather views from the profession, together with an analysis of existing guidelines, and recent literature in the field. The most significant primary data emerged from 74 qualitative interviews with supervisors, examiners, research deans and administrators, and candidates in dance and more broadly across the creative arts. Qualitative data gathered from the two primary sources, was coded and analysed using the NVivo software program. Further perspectives were drawn from international consultant and dance researcher Susan Melrose, as well as publications in the field, and initial feedback from a draft document circulated at the World Dance Alliance Global Summit in July 2008 in Brisbane. Refinement of data occurred in a continual sifting process until the final publication was produced. This process resulted in a set of guidelines in the form of a complex dynamic system for both product and process oriented outcomes of multi-modal theses, along with short position papers on issues which arose from the research such as contested definitions, embodiment and ephemerality, ‘liveness’ in performance research higher degrees, dissolving theory/practice binaries, the relationship between academe and industry, documenting practices and a re-consideration of the viva voce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Node-based Local Mesh Generation (NLMG) algorithm, which is free of mesh inconsistency, is one of core algorithms in the Node-based Local Finite Element Method (NLFEM) to achieve the seamless link between mesh generation and stiffness matrix calculation, and the seamless link helps to improve the parallel efficiency of FEM. Furthermore, the key to ensure the efficiency and reliability of NLMG is to determine the candidate satellite-node set of a central node quickly and accurately. This paper develops a Fast Local Search Method based on Uniform Bucket (FLSMUB) and a Fast Local Search Method based on Multilayer Bucket (FLSMMB), and applies them successfully to the decisive problems, i.e. presenting the candidate satellite-node set of any central node in NLMG algorithm. Using FLSMUB or FLSMMB, the NLMG algorithm becomes a practical tool to reduce the parallel computation cost of FEM. Parallel numerical experiments validate that either FLSMUB or FLSMMB is fast, reliable and efficient for their suitable problems and that they are especially effective for computing the large-scale parallel problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While there is substantial research on attitudinal and behavioral loyalty, the deconstruction of attitudinal loyalty into its two key components – emotional and cognitive loyalty – has been largely ignored. Despite the existence of managerial strategies aimed at increasing each of these two components, there is little academic research to support these managerial efforts. This paper seeks to advance the understanding of emotional and cognitive brand loyalty by examining the psychological function that these dimensions of brand loyalty perform for the consumer. We employ Katz’s (1960) four functions of attitudes (utilitarian, knowledge, value-expression, ego-defence) to investigate this question. Surveys using a convenience sample were completed by 268 consumers in two metropolitan cities on a variety of goods, services and durable products. The relationship between the functions and dimensions of loyalty were examined using MANOVA. The results show that both the utilitarian and knowledge functions of loyalty are significantly positively related to cognitive loyalty while the ego-defensive function of loyalty is significantly positively related to emotional loyalty. The results for the value-expressive function of loyalty were nonsignificant.