991 resultados para Semideciduous seasonal forest
Resumo:
Edaphic variables figure significantly in plant community adaptations in tropical ecosystems but are often difficult to resolve because of the confounding influence of climate. Within the Chiquibul forest of Belize, large areas of Ultisols and Inceptisols occur juxtaposed within a larger zone of similar climate, permitting unambiguous assessment of edaphic contributions to forest composition. Wet chemical analyses, X-ray diffraction and X-ray fluorescence spectroscopy were employed to derive chemical (pH, exchangeable cations, CEC, total and organic C, total trace elements) and physical (texture, mineralogy) properties of four granite-derived Ustults from the Mountain Pine Ridge plateau and four limestone-derived Ustepts from the San Pastor region. The soils of these two regions support two distinct forests, each possessing a species composition reflecting the many contrasting physicochemical properties of the underlying soil. Within the Mountain Pine Ridge forest, species abundance and diversity is constrained by nutrient deficiencies and water-holding limitations imposed by the coarse textured, highly weathered Ultisols. As a consequence, the forest is highly adapted to seasonal drought, frequent fires and the significant input of atmospherically derived nutrients. The nutrient-rich Inceptisols of the San Pastor region, conversely, support an abundant and diverse evergreen forest, dominated by Sabal mauritiiformis, Cryosophila stauracantha and Manilkara spp. Moreover, the deep, fine textured soils in the depressions of the karstic San Pastor landscape collect and retain during the wet season much available water, thereby serving as refugia during particularly long periods of severe drought. To the extent that the soils of the Chiquibul region promote and maintain forest diversity, they also confer redundancy and resilience to these same forests and, to the broader ecosystem, of which they are a central part. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.
Resumo:
Context: Variation in photosynthetic activity of trees induced by climatic stress can be effectively evaluated using remote sensing data. Although adverse effects of climate on temperate forests have been subjected to increased scrutiny, the suitability of remote sensing imagery for identification of drought stress in such forests has not been explored fully. Aim: To evaluate the sensitivity of MODIS-based vegetation index to heat and drought stress in temperate forests, and explore the differences in stress response of oaks and beech. Methods: We identified 8 oak and 13 beech pure and mature stands, each covering between 4 and 13 MODIS pixels. For each pixel, we extracted a time series of MODIS NDVI from 2000 to 2010. We identified all sequences of continuous unseasonal NDVI decline to be used as the response variable indicative of environmental stress. Neural Networks-based regression modelling was then applied to identify the climatic variables that best explain observed NDVI declines. Results: Tested variables explained 84–97% of the variation in NDVI, whilst air temperature-related climate extremes were found to be the most influential. Beech showed a linear response to the most influential climatic predictors, while oak responded in a unimodal pattern suggesting a better coping mechanism. Conclusions: MODIS NDVI has proved sufficiently sensitive as a stand-level indicator of climatic stress acting upon temperate broadleaf forests, leading to its potential use in predicting drought stress from meteorological observations and improving parameterisation of forest stress indices.
Resumo:
1.Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography but the mechanisms have yet to be explored fully in wild populations. 2.Here, we investigate the mechanisms linking agricultural land-use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus; a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall), and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. 3.Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture it would significantly under-estimate breeding success in dry (early) springs, and over-estimate breeding success in wet (late) springs. 4.Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. 5.Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations.
Resumo:
Mosquito diversity was determined in an area located on the southern limit of the Atlantic Forest on the north coast of Rio Grande of Sul State. Our major objective was to verify the composition, diversity, and temporal distribution of the mosquito fauna, and the influence of temperature and rainfall. Samplings were performed monthly between December, 2006 and December, 2008, in three biotopes: forest, urban area, and transition area, using CDC light traps and a Nasci vacuum. A total of 2,376 specimens was collected, from which 1,766 (74.32%) were identified as 55 different species belonging to ten genera. Culex lygrus, Aedes serratus, and Aedes nubilus were dominant (eudominant) and constant throughout samplings. The forest environment presented the highest species dominance (D(S) = 0.20), while the transition area showed the highest values of diversity (H` = 2.55) and evenness (J` = 0.85). These two environments were the most similar, according to the Morisita-Horn Index (I(M-H) = 0.35). Bootstrap estimates showed that 87.3% of the species occurring in the region were detected. The seasonal pattern showed a greater abundance of mosquitoes between May and October, indicating the period to intensify entomological surveillance in that area. Journal of Vector Ecology 36 (1): 175-186. 2011.
Resumo:
The seasonal distribution of Lutzomyia longipalpis was studied in two forested and five domiciliary areas of the urban area of Campo Grande; MS, from December 2003 to November 2005. Weekly captures were carried out with CDC light traps positioned on ground and in the canopy inside a residual forest and on the edge (ground) of a woodland and in at least one of the following ecotopes in peridomiciles-a cultivated area, a chicken coop, a pigsty, a kennel, a goat and sheep shelter and an intradomicile. A total of 9519 sand flies were collected, 2666 during the first year and 6853 during the second. L. longipalpis was found throughout the 2-year period, presenting smaller peaks at intervals of 2-3 months and two greater peaks, the first in February and the second in April 2005, soon after periods of heavy rain. Only In one of the woodlands was a significant negative correlation (p < 0.05) between the number of insects and temperature during the first year and the climatic factors (temperature, RHA and rain) was observed. In the domiciliary areas in four domiciles some positive correlations (p < 0.05) occurred in relation to one or more climatic factors; however, the species shows a clear tendency to greater frequency (72%) in the rainy season than in the dry (28%). Thus, we recommend an intensification of the VL control measures applied in Campo Grande, MS, during the rainy season with a view to reducing the risk of the transmission of the disease. (C) 2007 Elsevier B.V. All fights reserved.
Resumo:
The Amazon Basin is crucial to global circulatory and carbon patterns due to the large areal extent and large flux magnitude. Biogeophysical models have had difficulty reproducing the annual cycle of net ecosystem exchange (NEE) of carbon in some regions of the Amazon, generally simulating uptake during the wet season and efflux during seasonal drought. In reality, the opposite occurs. Observational and modeling studies have identified several mechanisms that explain the observed annual cycle, including: (1) deep soil columns that can store large water amount, (2) the ability of deep roots to access moisture at depth when near-surface soil dries during annual drought, (3) movement of water in the soil via hydraulic redistribution, allowing for more efficient uptake of water during the wet season, and moistening of near-surface soil during the annual drought, and (4) photosynthetic response to elevated light levels as cloudiness decreases during the dry season. We incorporate these mechanisms into the third version of the Simple Biosphere model (SiB3) both singly and collectively, and confront the results with observations. For the forest to maintain function through seasonal drought, there must be sufficient water storage in the soil to sustain transpiration through the dry season in addition to the ability of the roots to access the stored water. We find that individually, none of these mechanisms by themselves produces a simulation of the annual cycle of NEE that matches the observed. When these mechanisms are combined into the model, NEE follows the general trend of the observations, showing efflux during the wet season and uptake during seasonal drought.
Resumo:
A variety of human-induced disturbances such as forest fragmentation and recovery after deforestation for pasture or agricultural activities have resulted in a complex landscape mosaic in the Una region of northeastern Brazil. Using a set of vegetation descriptors, we investigated the main structural changes observed in forest categories that comprise the major components of the regional landscape and searched for potential key descriptors that could be used to discriminate among different forest categories. We assessed the forest structure of five habitat categories defined as (I) interiors and (2) edges of large fragments of old-growth forest (>1000 ha), (3) interiors and (4) edges of small forest fragments (<100 ha), and (5) early secondary forests. Forest descriptors used here were: frequency of herbaceous lianas and woody climbers, number of standing dead trees, number of fallen trunks, litter depth, number of pioneer plants (early secondary and shade-intolerant species), vertical foliage stratification profile and distribution Of trees in different diameter classes. Edges and interiors of forest fragments were significantly different only in the number of standing dead trees. Secondary forests and edges of fragments showed differences in litter depth, fallen trunks and number of pioneer trees, and secondary forests were significantly different from fragment interiors in the number of standing dead trees and the number of pioneer trees. Horizontal and vertical structure evaluated via ordination analysis showed that fragment interiors, compared to secondary forests, were characterized by a greater number of medium (25-35 cm) and large (35-50 cm) trees and smaller numbers of thin trees (5-10 cm). There was great heterogeneity at the edges of small and large fragments, as these sites were distributed along almost the entire gradient. Most interiors of large and small fragments presented higher values of foliage densities at higher strata ( 15-20 m and at 20-25 m height), and lower densities at 1-5 m. All secondary forests and some fragment edge sites showed an opposite tendency. A discriminant function highlighted differences among forest categories, with transects of large fragment interiors and secondary forests representing two extremes along a disturbance gradient determined by foliage structure (densities at 15-20 m and 20-25 m), with the edges of both large and small fragments and the interiors of small fragments scattered across the gradient. The major underlying processes determining patterns of forest disturbance in the study region are discussed, highlighting the importance of forest fragments, independently of its size, as forests recovery after clear cut show a greatly distinct structure, with profound implications on fauna movements. (C) 2009 Elsevier BY. All rights reserved.
Resumo:
In this paper, we report on range use patterns of birds in relation to tropical forest fragmentation. Between 2003 and 2005, three understorey passerine species were radio-tracked in five locations of a fragmented and in two locations of a contiguous forest landscape on the Atlantic Plateau of Sao Paulo in south-eastern Brazil. Standardized ten-day home ranges of 55 individuals were used to determine influences of landscape pattern, season, species, sex and age. In addition, total observed home ranges of 76 individuals were reported as minimum measures of spatial requirements of the species. Further, seasonal home ranges of recaptured individuals were compared to examine site fidelity. Chiroxiphia caudata, but not Pyriglena leucoptera or Sclerurus scansor, used home ranges more than twice as large in the fragmented versus contiguous forest. Home range sizes of C. caudata differed in relation to sex, age, breeding status and season. Seasonal home ranges greatly overlapped in both C. caudata and in S. scansor. Our results suggest that one response by some forest bird species to habitat fragmentation entails enlarging their home ranges to include several habitat fragments, whereas more habitat-sensitive species remain restricted to larger forest patches.
Resumo:
Decomposition was studied in a reciprocal litter transplant experiment to examine the effects of forest type, litter quality and their interaction on leaf decomposition in four tropical forests in south-east Brazil. Litterbags were used to measure decomposition of leaves of one tree species from each forest type: Calophyllum brasiliense from restinga forest; Guapira opposita from Atlantic forest; Esenbeckia leiocarpa from semi-deciduous forest; and Copaifera langsdorffii from cerradao. Decomposition rates in rain forests (Atlantic and restinga) were twice as fast as those in seasonal forests (semi-deciduous and cerradao), suggesting that intensity and distribution of precipitation are important predictors of decomposition rates at regional scales. Decomposition rates varied by species, in the following order: E. leiocarpa > C. langsdorffii > G. opposita > C. brasiliense. However, there was no correlation between decomposition rates and chemical litter quality parameters: C:N, C:P, lignin concentration and lignin:N. The interaction between forest type and litter quality was positive mainly because C. langsdorffii decomposed faster than expected in its native forest. This is a potential indication of a decomposer`s adaptation to specific substrates in a tropical forest. These findings suggest that besides climate, interactions between decomposers and plants might play an essential role in decomposition processes and it must be better understood.
Resumo:
Although seasonal metabolic variation in ectothermic tetrapods has been investigated primarily in the context of species showing some level of metabolic depression during winter, but several species of anurans maintain their activity patterns throughout the year in tropical and subtropical areas. The tree-frog Hypsiboas prasinus occurs in the subtropical Atlantic Forest and remains reproductively active during winter, at temperatures below 10 degrees C. We compared males calling in summer and winter, and found that males of H. prasinus exhibit seasonal adjustments in metabolic and morphometric variables. Individuals calling during winter were larger and showed higher resting metabolic rates than those calling during summer. Calling rates were not affected by season. Winter animals showed lower liver and heart activity level of citrate synthase (CS), partially compensated by larger liver mass. Winter individuals also showed higher activity Of pyruvate kinase (PK) and lower activity of CS in trunk muscles, and higher activity of CS in leg muscles. Winter metabolic adjustments seem to be achieved by both compensatory mechanisms to the lower environmental temperature and a seasonally oriented aerobic depression of several organs. The impact of seasonal metabolic changes on calling performance and the capacity of subtropical anurans for metabolic thermal acclimatization are also discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We describe the advertisement call, tadpole, karyotype, and additional information on the natural history of Cycloramphus lutzorum from southern Brazil. Sonograms were generated from digitally recorded calls. Tadpoles were collected in the field for description in the lab, and an adult was collected for karyotyping. Data on seasonal activity were gathered monthly from November 2005 to November 2007. All tadpoles (N = 21), juveniles (N = 18), and adults (N = 52) were found exclusively in streams. Reproduction, as identified by calling frogs, occurred from July through November. Frogs call all day long, but mostly at dusk, from rock crevices inside the stream edges near the splash zone. The call is short and loud, with 11 pulsed notes, of 491-641 ms, with a dominant frequency of 0.98-1.39 kHz. We describe the exotrophic and semiterrestrial tadpoles, always found in constantly humid vertical rock walls in the stream. Tadpoles of C. lutzorum are recognized by differences in labial tooth row formula, eye diameter, body shape, position of nares, and development of tail. Like congeneric species, the karyotype of C. lutzorum comprises 26 metacentric and submetacentric chromosomes. Cycloramphus lutzorum is restricted to and adapted for living in fast flowing streams, many of which are threatened by deforestation, pollution, and habitat loss. Therefore, we recommend the status of C. lutzorum be changed from its current ""Data Deficient"" to ""Near Threatened (NT)"" in the IUCN species red list.
Resumo:
Sand fly populations of different ecological niches in the Amaraji endemic American Cutaneous Leishmaniasis (ACL) focus of the Pernambuco Atlantic Forest region of northeastern Brazil were monitored spatiotemporally. Lutzomyia whitmani was dominant in all niches but occurred in smaller numbers in forested locations. L. whitmani was significantly less seasonal than the other species, being present throughout the year while other species were more abundant between February and April. These results suggest that L. whitmani may potentially be the principal vector of ACL in the region, even though the sand fly fauna was diverse: 88% were L.whitmani and 12% belonged to 11 other species. Two other species, L. complexa (1.3%) and L. migonei (0.8%), considered to be ACL vectors in other regions, were also present. This detailed picture of the sand fly population`s abundance and spatiotemporal distribution provides a basis for future modeling studies of forecasting sand fly activity patterns and ACL occurence.
Resumo:
This article discusses seasonal and interannual variations of the evapotranspiration (ET) rates in Bananal Island floodplain, Brazil. Measurements included ET and sensible heat flux using the eddy covariance method, atmospheric forcings (net radiation, Rn, vapor pressure deficit, VPD, wind speed and air temperature), soil moisture profiles, groundwater level and flood height, taken from November 2003 to December 2006. For the hydrological years (October-September) of 2003/2004, 2004/2005 and 2005/2006, the accumulated precipitation was 1692, 1471, 1914 mm and the accumulated ET was 1361, 1318 and 1317 mm, respectively. Seasonal analyses indicated that ET decreased in the dry season (average 3.7 mm day(-1)), despite the simultaneous increase in Rn, air temperature and VPD. The increase of ET in the wet season and particularly in the flood period (average 4.1 mm day(-1)) showed that the free water surface evaporation strongly influenced the energy exchange. Soil moisture, which was substantially depleted during the dry season, and adaptative vegetation mechanisms such as leaf senescence contributed to limit the dry season ET. Strong drainage within permeable sandy soils helped to explain the soil moisture depletion. These results suggest that the Bananal flooding area shows a different pattern in relation to the upland Amazon forests, being more similar to the savanna strictu senso areas in central Brazil. For example, seasonal ET variation was not in phase with Rn; the wet season ET was higher than the dry season ET; and the system stored only a tiny memory of the flooding period, being sensitive to extended drought periods.
Resumo:
This study was conducted at three sites of different characteristics in Sao Paulo State Sao Paulo (SPA), Piracicaba (PRB) and Mate Atlantica Forest (MAT) PM(10), n-alkanes. pristane and phytane, PAHs, water-soluble ions and biomass burning tracers like levoglucosan and retene, were determined in quartz fiber filters. Samplings occurred on May 8th to August 8th, 2007 at the MAT site; on August 15th to 29th in 2007 and November 10th to 29th in 2008 at the PRB site and, March 13th to April 4th in 2007 and August 7th to 29th in 2008 at the SPA site Aliphatic compounds emitted biogenically were less abundant at the urban sites than at the forest site, and its distribution showed the influence of tropical vascular plants Air mass transport front biomass burning regions is likely to impact the sites with specific molecular markers The concentrations of all species were variable and dependent of seasonal changes In the most dry and polluted seasons, n-alkane and canon total concentrations were similar between the megacity and the biomass burning site PAHs and inorganic ion abundances were higher at Sao Paulo than Piracicaba, yet, the site influenced by biomass burning seems lobe the most impacted by the organic anion abundance in the atmosphere Pristane and phytane confirm the contamination by petroleum residues at urban sites, at the MAT site, biological activity and long range transport of pollutants might influence the levels of pristane (C) 2010 Elsevier B V All rights reserved