981 resultados para Self-adhesive resin cement
Resumo:
Purpose: To evaluate the effect of cement shade, light-curing unit, and water storage on tensile bond strength (a) of a feldspathic ceramic resin bonded to dentin.Materials and Methods: The dentin surface of 40 molars was exposed and etched with 37% phosphoric acid, then an adhesive system was applied. Forty blocks of feldspathic ceramic (Vita VM7) were produced. The ceramic surface was etched with 10% hydrofluoric acid for 60 s, followed by the application of a silane agent and a dual-curing resin cement (Variolink II). Ceramic blocks were cemented to the treated dentin using either A3 or transparent (Tr) shade cement that was activated using either halogen or LED light for 40 s. All blocks were stored in 37 degrees C distilled water for 24 h before cutting to obtain non-trimmed bar-shaped specimens (adhesive area = 1 mm(2) +/- 0.1) for the microtensile bond strength test. The specimens were randomly grouped according to the storage time: no storage or stored for 150 days in 37 degrees C distilled water. Eight experimental groups were obtained (n = 30). The specimens were submitted to the tensile bond strength test using a universal testing machine at a crosshead speed of 1 mm/min. The data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha = 0.05).Results: The mean bond strength values were significantly lower for the corresponding water stored groups, except for the specimens using A3 resin cement activated by halogen light. There was no significance difference in mean bond strength values among all groups after water storage.Conclusion: Water storage had a detrimental effect under most experimental conditions. For both cement shades investigated (Tr and A3) under the same storage condition, the light-curing units (QTH and LED) did not affect the mean microtensile bond strengths of resin-cemented ceramic to dentin.
Resumo:
This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC) methods were evaluated: (1) 110-mu m Al(2)O(3)+Silanization; (2) Chairside silica coating+silanization: (3) Laboratory silica coating+silanization. Following surface conditioning, the resin cement (Panavia F) was bonded to the conditioned ceramics. Although no statistically significant differences (p=0.1076) were seen between the test methods, results yielded with the different surface conditioning methods showed statistically significant differences (p<0.0001) (SC2=SC3>SC1.). As for the interaction between the factors, two-way ANOVA showed that it was not statistically significant (p=0.1443). MTBS test resulted in predominantly mixed failure (85%), but SBS test resulted in exclusively adhesive failure. on the effects of different surface conditioning methods, chairside and laboratory tribochemical silica coating followed by silanization showed higher bond strength results compared to those of aluminum oxide abrasion and silanization, independent of the test method employed.
Resumo:
Purpose: To evaluate the influence of three different adhesives, each used as an intermediary layer, on microleakage of sealants applied under condition of salivary contamination. Materials and Methods: Six different experimental conditions were compared, 3 with adhesives and 3 without. After prophylaxis and acid etching of enamel, salivary contamination was placed for 10 s. In Group SC the sealant was applied after saliva without bonding agent and then light-cured. In Group SCA, after saliva, the surface was air dried, and then the sealant was applied and cured. In Groups ScB, SB and PB, a bonding agent (Scotchbond Dual Cure/3M, Single Bond/3M and Prime & Bond 2.1/Dentsply, respectively) was applied after the saliva and prior to the sealant application and curing. After storage in distilled water at 37°C for 24 hrs, the teeth were submitted to 500 thermal cycles (5°C and 55°C), and silver nitrate was used as a leakage tracer. Leakage data were collected on cross sections as percentage of total enamel-sealant interface length. Representative samples were evaluated under SEM. Results: Sealants placed on contaminated enamel with no bonding agent showed extensive microleakage (94.27% in SC; 42.65% in SCA). The SEM revealed gaps as wide as 20 μm in areas where silver nitrate leakage could be visualized. In contrast, all bonding agent groups showed leakage less than 6.9%. Placement of sealant with a dentin-bonding agent on contaminated enamel significantly reduced microleakage (P< 0.0001). The use of a bonding agent as an intermediary layer between enamel and sealant significantly reduced saliva's effect on sealant microleakage.
Resumo:
Purpose: This investigation studied the effects of 3 surface treatments on the shear bond strength of a light-activated composite resin bonded to acrylic resin denture teeth. Materials and Methods: The occlusal surfaces of 30 acrylic resin denture teeth were ground flat with up to 400-grit silicon carbide paper. Three different surface treatments were evaluated: (1) the flat ground surfaces were primed with methyl methacrylate (MMA) monomer for 180 seconds; (2) light-cured adhesive resin was applied and light polymerized according to the manufacturer's instructions; and (3) treatment 1 followed by treatment 2. The composite resin was packed on the prepared surfaces using a split mold. The interface between tooth and composite was loaded at a cross-head speed of 0.5 mm/min until failure. Results: Analysis of variance indicated significant differences between the surface treatments. Results of mean comparisons using Tukey's test showed that significantly higher shear bond strengths were developed by bonding composite resin to the surfaces that were previously treated with MMA and then with the bonding agent when compared to the other treatments. Conclusion: Combined surface treatment of MMA monomer followed by application of light-cured adhesive resin provided the highest shear bond strength between composite resin and acrylic resin denture teeth.
Resumo:
During the cementation of metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. This study evaluated the influence of chemical activation compared with dual-curing (chemical and light activation), on the hardness of four dual-curing resin cements. In a darkened environment, equal weight proportions of base and catalyst pastes of the cements Scotchbond Resin Cement, Variolink II, Enforce and Panavia F were mixed and inserted into moulds with cavities of 4 mm in diameter and 2 mm in height. Subsequently, the cements were: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated (dual-curing = dual-cured groups). The Vickers hardness number was measured at 1 hour, 24 hours and 7 days after the start time of cements' spatulation. For all the cements, the hardness values of self-cured groups were lower than those of the respective dual-cured groups at 1 hour and 24 hours. At 7 days, this behavior continued for Variolink II and Panavia F, whilst for Scotchbond Resin Cement and Enforce there was no statistical difference between the two activation modes. All cements showed a significant increase in their hardness values from 1 hour to 7 days for both activation modes. Of the self-cured groups, Scotchbond Resin Cement and Variolink II presented the highest and the lowest hardness values, respectively, for all three times tested. Within the limitations of this study, up to the time of 24 h, chemical activation alone was unable to promote similar hardness as to that obtained with dual-curing.
Resumo:
Purpose: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. Materials and Methods: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-μm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37°C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. Results: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0 ± 6.7 MPa) and group 3 (26.8 ± 7.4 MPa) showed greater bond strength than group 1 (15.1 ± 5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. Conclusion: The hypothesis was confirmed - the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.
Resumo:
Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.
Resumo:
Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.
Resumo:
Objective: To evaluate the marginal microleakage in enamel and dentin/cementum walls in preparations with a high C-factor, using 3 resin composite insertion techniques. The null hypothesis was that there is no difference among the 3 resin composite insertion techniques. Method and Materials: Standardized Class 5 cavities were prepared in the lingual and buccal aspects of 30 caries-free, extracted third molars. The prepared teeth were randomly assigned to 3 groups: (1) oblique incremental placement technique, (2) horizontal incremental placement technique, and (3) bulk insertion (single increment). The preparations were restored with a 1-bottle adhesive (Single Bond, 3M ESPE) and microhybrid resin composite (Z100, 3M ESPE). Specimens were isolated with nail varnish except for a 2-mm-wide rim around the restoration and thermocycled (1,000 thermal cycles, 5°C/55°C; 30-second dwell time). The specimens were immersed in an aqueous solution of 50 wt% silver nitrate for 24 hours, followed by 8 hours in a photo-developing solution and evaluated for microleakage using an ordinal scale of 0 to 4. The microleakage scores obtained from occlusal and gingival walls were analyzed with Wilcoxon and Kruskal-Wallis nonparametric tests. Results: The null hypothesis was accepted. The horizontal incremental placement technique, the oblique incremental technique, and bulk insertion resulted in statistically similar enamel and dentin microleakage scores. Conclusion: Neither the incremental techniques nor the bulk placement technique were capable of eliminating the marginal microleakage in preparations with a high C-factor.
Resumo:
Purpose: The purpose of this study was to verify the influence of surface sealants and dentin adhesive systems on the microleakage of composite restorations. Methods: Class V cavities were made on the buccal faces of 100 permanent third molars and restored with Z250. After 24 hours, they were submitted to polishing and finishing processes. The teeth were divided into groups according to the sealant agent: group 1 - Single Bond; group 2 - Opti Bond Solo Plus; group 3 - Fortify; group 4 - Fortify Plus; and group 5 - control without sealant. The analysis of immediate microleakage was performed in 10 restorations from each group, soon after the sealing. The other 10 specimens from each group were submitted to tooth-brushing and thermal cycles. The teeth were isolated and immersed in 2% methylene blue solution, washed in tap water, and sectioned in the buccolingual direction. The percentage of marginal leakage was calculated using an image analysis program, and results were submitted to analysis of variance and Tukey's test. Results: All the sealed groups demonstrated lower microleakage values compared to the control group. Group 3, sealed with Fortify, presented the lowest mean microleakage values. Conclusion: The application of surface sealants effectively decreased the microleakage in composite resin restorations.
Resumo:
This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 μm SiOx + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.
Resumo:
This study evaluated the effect of mechanical cycling on the bond strength of zirconia posts to root dentin. Thirty single-rooted human teeth were transversally sectioned to a length of 16 mm. The canal preparation was performed with zirconia post system drills (CosmoPost, Ivoclar) to a depth of 12 mm. For post cementation, the canals were treated with total-etch, 3-steps All-Bond 2 (Bisco), and the posts were cemented with Duolink dual resin cement (Bisco). Three groups were formed (n = 10): G1 - control, no mechanical cycling; G2 - 20,000 mechanical cycles; G3 - 2,000,000 mechanical cycles. A 1.6-mm-thick punch induced loads of 50 N, at a 45° angle to the long axis of the specimens and at a frequency of 8 Hz directly on the posts. To evaluate the bond strengths, the specimens were sectioned perpendicular to the long axis of the teeth, generating 2-mm-thick slices, approximately (5 sections per teeth), which were subjected to the push-out test in a universal testing machine at a 1 mm/min crosshead speed. The push-out bond strength was affected by the mechanical cycling (1-way ANOVA, p = .0001). The results of the control group (7.7 ± 1.3 MPa) were statistically higher than those of G2 (3.9 ± 2.2 MPa) and G3 (3.3 ± 2.3 MPa). It was concluded that the mechanical cycling damaged the bond strength of zirconia posts to root dentin.
Resumo:
The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter × 1 mm thick) from each of 2 cements, Panavia® F2.0 (Kuraray) and RelyX™ Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm 2 for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10°C/min from 25 to 700°C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements (p < 0.05). The Tukey's test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements (p > 0.05). The Relx-Y™ Unicem mean values were significantly higher than Panavia® F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements. © 2009 Pleiades Publishing, Ltd.
Resumo:
Aim : To compare the push-out strength of bovine- and human-root dentin and, thus, evaluate the suitability of bovine-root dentin to substitute human-root dentin for bond strength testing. Materials and Methods : Ten single-rooted human-teeth and ten bovine incisors were prepared using a #3 bur of a fiber post system (12 mm long). The posts were duplicated with resin cement (Duolink). The root canals were treated with All Bond 2 adhesive system and the resin posts were cemented using Duolink. The specimens were cut perpendicular to their long axis, yielding disc-specimens with 1.5 mm thickness, which were submitted to a push-out test (1 mm/min). Ten bond strength values per group (n = 10) were used for statistical analysis (Student t test, a =.05). Results : Statistically significant differences were found for the bond strength values between bovine- (4.1 1.3 MPa) and human-root dentin (8.6 5.7 MPa) (P =.0001). Conclusion : The push-out strengths of bovine- and human-root dentin were statistically different.
Resumo:
The aim of this study was to evaluate the effect of desensitizing agents on the micro-shear bond strength of adhesive systems to dentin. Forty bovine teeth were divided into 8 groups (n=5): G1--Single Bond (SB); G2--GH.F + SB; G3-- Desensibilize + SB; G4--essensiv + SB; G5 --ingle Bond 2 (SB2); G6--H.E + SB2; G7--esensibilize + SB2; G8--Dessensiv + SB2. In all of the groups, the desensitizing agents were applied after phosphoric acid etching and before the dentin adhesive application. Z250 composite resin tubes were bonded on the treated surface. After 24 hours, the teeth were tested in a universal machine. Data were submitted to ANOVA and Tukey's test (5%). The results showed that the groups where Desensibilize and Dessensiv were applied exhibited smaller bond strength values.