966 resultados para Self-Adaptive Compression
Resumo:
Applications that exploit contextual information in order to adapt their behaviour to dynamically changing operating environments and user requirements are increasingly being explored as part of the vision of pervasive or ubiquitous computing. Despite recent advances in infrastructure to support these applications through the acquisition, interpretation and dissemination of context data from sensors, they remain prohibitively difficult to develop and have made little penetration beyond the laboratory. This situation persists largely due to a lack of appropriately high-level abstractions for describing, reasoning about and exploiting context information as a basis for adaptation. In this paper, we present our efforts to address this challenge, focusing on our novel approach involving the use of preference information as a basis for making flexible adaptation decisions. We also discuss our experiences in applying our conceptual and software frameworks for context and preference modelling to a case study involving the development of an adaptive communication application.
Resumo:
This paper develops an evolutionary theory of adaptive growth, understood as a product of structural change and economic self-transformation, based upon processes that are closely connected with but not reducible to the growth of knowledge. The dominant connecting theme is enterprise, the innovative variations it generates and the multiple connections between investment, innovation, demand and structural transformation in the market process. The paper explores the dependence of macroeconomic productivity growth on the diversity of technical progress functions and income elasticities of demand at the industry level, and the resolution of this diversity into patterns of economic change through market processes. It is shown how industry growth rates are constrained by higher-order processes of emergence that convert an ensemble of industry growth rates into an aggregate rate of growth. The growth of productivity, output and employment are determined mutually and endogenously, and their values depend on the variation in the primary causal influences in the system.
Resumo:
Implementation studies and related research in organizational theory can be enhanced by drawing on the field of complex systems to understand better and, as a consequence, more successfully manage change. This article reinterprets data previously published in the British Journal of Management to reveal a new contribution, that policy implementation processes should be understood as a self-organizing system in which adaptive abilities are extremely important for stakeholders. In other words, national policy is reinterpreted at the local level, with each local organization uniquely mixing elements of national policy with their own requirements making policy implementation unpredictable and more sketchy. The original article explained different paces and directions of change in terms of traditional management processes: leadership, politics, implementation and vision. By reinterpreting the data, it is possible to reveal that deeper level processes, which are more emergent, are also at work influencing change, which the authors label possibility space. Implications for theory, policy and practice are identified.
Resumo:
We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser’s power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such a nonlinear laser system.
Resumo:
Self-adaptation is emerging as an increasingly important capability for many applications, particularly those deployed in dynamically changing environments, such as ecosystem monitoring and disaster management. One key challenge posed by Dynamically Adaptive Systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS in response to varying environmental conditions. Berry et al. previously identified four levels of RE that should be performed for a DAS. In this paper, we propose the Levels of RE for Modeling that reify the original levels to describe RE modeling work done by DAS developers. Specifically, we identify four types of developers: the system developer, the adaptation scenario developer, the adaptation infrastructure developer, and the DAS research community. Each level corresponds to the work of a different type of developer to construct goal model(s) specifying their requirements. We then leverage the Levels of RE for Modeling to propose two complementary processes for performing RE for a DAS. We describe our experiences with applying this approach to GridStix, an adaptive flood warning system, deployed to monitor the River Ribble in Yorkshire, England.
Resumo:
We propose and numerically demonstrate a new concept of fibre laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear pulse spectral compression in the passive fibre. The latter process is beneficial for improving the power efficiency as it prevents strong spectral filtering from being highly dissipative. © 2012 OSA.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
This paper presents a technique for building complex and adaptive meshes for urban and architectural design. The combination of a self-organizing map and cellular automata algorithms stands as a method for generating meshes otherwise static. This intends to be an auxiliary tool for the architect or the urban planner, improving control over large amounts of spatial information. The traditional grid employed as design aid is improved to become more general and flexible.
Resumo:
Problems for intellectualisation for man-machine interface and methods of self-organization for network control in multi-agent infotelecommunication systems have been discussed. Architecture and principles for construction of network and neural agents for telecommunication systems of new generation have been suggested. Methods for adaptive and multi-agent routing for information flows by requests of external agents- users of global telecommunication systems and computer networks have been described.
Resumo:
There are a great deal of approaches in artificial intelligence, some of them also coming from biology and neirophysiology. In this paper we are making a review, discussing many of them, and arranging our discussion around the autonomous agent research. We highlight three aspect in our classification: type of abstraction applied for representing agent knowledge, the implementation of hypothesis processing mechanism, allowed degree of freedom in behaviour and self-organizing. Using this classification many approaches in artificial intelligence are evaluated. Then we summarize all discussed ideas and propose a series of general principles for building an autonomous adaptive agent.
Resumo:
We study heterogeneity among nodes in self-organizing smart camera networks, which use strategies based on social and economic knowledge to target communication activity efficiently. We compare homogeneous configurations, when cameras use the same strategy, with heterogeneous configurations, when cameras use different strategies. Our first contribution is to establish that static heterogeneity leads to new outcomes that are more efficient than those possible with homogeneity. Next, two forms of dynamic heterogeneity are investigated: nonadaptive mixed strategies and adaptive strategies, which learn online. Our second contribution is to show that mixed strategies offer Pareto efficiency consistently comparable with the most efficient static heterogeneous configurations. Since the particular configuration required for high Pareto efficiency in a scenario will not be known in advance, our third contribution is to show how decentralized online learning can lead to more efficient outcomes than the homogeneous case. In some cases, outcomes from online learning were more efficient than all other evaluated configuration types. Our fourth contribution is to show that online learning typically leads to outcomes more evenly spread over the objective space. Our results provide insight into the relationship between static, dynamic, and adaptive heterogeneity, suggesting that all have a key role in achieving efficient self-organization.
Resumo:
Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.
Resumo:
Previous work has demonstrated that planning behaviours may be more adaptive than avoidance strategies in driving self-regulation, but ways of encouraging planning have not been investigated. The efficacy of an extended theory of planned behaviour (TPB) plus implementation intention based intervention to promote planning self-regulation in drivers across the lifespan was tested. An age stratified group of participants (N=81, aged 18-83 years) was randomly assigned to an experimental or control condition. The intervention prompted specific goal setting with action planning and barrier identification. Goal setting was carried out using an agreed behavioural contract. Baseline and follow-up measures of TPB variables, self-reported, driving self-regulation behaviours (avoidance and planning) and mobility goal achievements were collected using postal questionnaires. Like many previous efforts to change planned behaviour by changing its predictors using models of planned behaviour such as the TPB, results showed that the intervention did not significantly change any of the model components. However, more than 90% of participants achieved their primary driving goal, and self-regulation planning as measured on a self-regulation inventory was marginally improved. The study demonstrates the role of pre-decisional, or motivational components as contrasted with post-decisional goal enactment, and offers promise for the role of self-regulation planning and implementation intentions in assisting drivers in achieving their mobility goals and promoting safer driving across the lifespan, even in the context of unchanging beliefs such as perceived risk or driver anxiety.
Resumo:
This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.