844 resultados para Sectoral shocks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this article is to analyse the spatial distribution of the automotive industry in Brazil in terms of its various economic categories between 1995 and 2011, and to shed light on its sectoral linkages through inter-regional input-output matrices. By calculating the coefficient of localization (QLij) for that period, it was found that the third wave of investments, which began in the second half of the 1990s, actually caused a slight spatial deconcentration of this sector in the national economy. The coefficient of geographic association (CAik)calculated for different years revealed a slight reduction, while maintaining a high level of concentration, which suggests that vehicle production is closely integrated with other economic activities. This integration was corroborated particularly in terms of input purchases (backward linkages) in all of the analysed regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on four years of observations of 3C 273 at 7mm obtained with the Itapetinga radio telescope, in Brazil, between 2009 and 2013. We detected a flare in 2010 March, when the flux density increased by 50 per cent and reached 35 Jy. After the flare, the flux density started to decrease and reached values lower than 10 Jy. We suggest that the 7-mm flare is the radio counterpart of the γ -ray flare observed by the Fermi Large Area Telescope in 2009 September, in which the flux density at high energies reached a factor of 50 of its average value. A delay of 170 d between the radio and γ -ray flares was revealed using the discrete correlation function (DCF) that can be interpreted in the context of a shock model, in which each flare corresponds to the formation of a compact superluminal component that expands and becomes optically thin at radio frequencies at latter epochs. The differences in flare intensity between frequencies and at different times are explained as a consequence of an increase in the Doppler factor δ, as predicted by the 16-yr precession model proposed by Abraham & Romero. This increase has a large effect on boosting at high frequencies while it does not affect the observed optically thick radio emission too much. We discuss other observable effects of the variation in δ, such as the increase in the formation rate of superluminal components, the variations in the time delay between flares and the periodic behaviour of the radio light curve that we have found to be compatible with changes in the Doppler factor.