938 resultados para Second order moment functions
Resumo:
An examination of the efficacy of religious studies scholarship through a Kuhnian lens.
Resumo:
This paper discusses how numerically imprecise information can be modelled and how a risk evaluation process can be elaborated by integrating procedures for numerically imprecise probabilities and utilities. More recently, representations and methods for stating and analysing probabilities and values (utilities) with belief distributions over them (second order representations) have been suggested. In this paper, we are discussing some shortcomings in the use of the principle of maximising the expected utility and of utility theory in general, and offer remedies by the introduction of supplementary decision rules based on a concept of risk constraints taking advantage of second-order distributions.
Resumo:
Cognitive radio (CR) was developed for utilizing the spectrum bands efficiently. Spectrum sensing and awareness represent main tasks of a CR, providing the possibility of exploiting the unused bands. In this thesis, we investigate the detection and classification of Long Term Evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) signals, which are used in uplink LTE, with applications to cognitive radio. We explore the second-order cyclostationarity of the LTE SC-FDMA signals, and apply results obtained for the cyclic autocorrelation function to signal detection and classification (in other words, to spectrum sensing and awareness). The proposed detection and classification algorithms provide a very good performance under various channel conditions, with a short observation time and at low signal-to-noise ratios, with reduced complexity. The validity of the proposed algorithms is verified using signals generated and acquired by laboratory instrumentation, and the experimental results show a good match with computer simulation results.
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
Resumo:
"CM-1034."
Resumo:
"CM-1033."
Resumo:
We shall consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet boundary conditions. Since such problems are typically not well-defined in the standard H^1-H^1 setting, we will introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore, we will discuss the numerical solution of such problems. Specifically, we employ an hp-discontinuous Galerkin method and derive an L^2-norm a posteriori error estimate. Numerical experiments demonstrate the effectiveness of the proposed error indicator in both the h- and hp-version setting. Indeed, in the latter case exponential convergence of the error is attained as the mesh is adaptively refined.
Resumo:
Both basic and applied research on the construction, implementation, maintenance, and evaluation of classification schemes is called classification theory. If we employ Ritzer’s metatheoretical method of analysis on the over one-hundred year-old body of literature, we can see categories of theory emerge. This paper looks at one particular part of knowledge organization work, namely classification theory, and asks 1) what are the contours of this intellectual space, and, 2) what have we produced in the theoretical reflection on con- structing, implementing, and evaluating classification schemes? The preliminary findings from this work are that classification theory can be separated into three kinds: foundational classification theory, first-order classification theory, and second-order classification theory, each with its own concerns and objects of study.
Resumo:
In this work, we consider the second-order discontinuous equation in the real line, u′′(t)−ku(t)=f(t,u(t),u′(t)),a.e.t∈R, with k>0 and f:R3→R an L1 -Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.
Resumo:
We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.
Resumo:
Mycobacterium bovis infects the wildlife species badgers Meles meles who are linked with the spread of the associated disease tuberculosis (TB) in cattle. Control of livestock infections depends in part on the spatial and social structure of the wildlife host. Here we describe spatial association of M. bovis infection in a badger population using data from the first year of the Four Area Project in Ireland. Using second-order intensity functions, we show there is strong evidence of clustering of TB cases in each the four areas, i.e. a global tendency for infected cases to occur near other infected cases. Using estimated intensity functions, we identify locations where particular strains of TB cluster. Generalized linear geostatistical models are used to assess the practical range at which spatial correlation occurs and is found to exceed 6 in all areas. The study is of relevance concerning the scale of localized badger culling in the control of the disease in cattle.