998 resultados para Schrodinger, Operadores de
Resumo:
One of the problems found in mechanical harvest of sugar cane is the lack of synchronism between the harvest machine and the infield wagon, causing crop losses as well as operational capacity. The objective of the present research was to design a system capable of helping to synchronize the sugar cane harvest machine with the wagon. The communication between tractor and harvest machine is wireless. Two ultrasound sensors coupled to the elevator and a microprocessor manage such information, generating a correct synchronization among the machines. The system was tested in laboratory and on field performing its function adequately, maintaining the two machines in synchronization, indicating and alerting the operators their relative positions. The developed system reduced the sugar cane lost in 60 kg ha-1 comparing to the harvest with the system turned off.
Resumo:
PURPOSE: In this case report, the clinical performance of a microhybrid resin composite placed with or without a flowable resin composite was compared, over a 48-month period. CASE DESCRIPTION: The patient of this case report presented 2 pairs of equivalent cervical abfraction lesions, under occlusion. Four restorations were placed in teeth 34, 35, 44 and 45. The restorations were divided into groups (Single Bond + Filtek-Flow + Filtek Z250 or Single Bond + Filtek Z250) and the materials were applied according to the manufactures instructions. Two previously calibrated operators placed the restorations and two other independent examiners evaluated the restorations at baseline and after 48 months, according to the USPHS criteria and modified criteria for color match. CONCLUSION: After 48 months of evaluation the lesions restored with Filtek-Flow as a liner under Filtek Z250 did not show better clinical performance than the restorations without Filtek-Flow. All restorations showed a trend toward dark yellowing after 48 months.
Resumo:
Este artigo evidencia análises contidas na dissertação cujo objetivo foi analisar os discursos dos operadores jurídico-sociais em processos judiciais de Varas da Infância e Juventude de duas cidades brasileiras. Os direitos das crianças e adolescentes, a questão social e a análise do discurso configuraram-se como referenciais teóricos e de análise. Resultados evidenciaram discursos de proteção e revelaram também a intenção de punição. A questão social foi ignorada pelos operadores a despeito dos contextos em que ocorreram as infrações.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Resumo:
A relaxation method is employed to study a rotating dense Bose-Einstein condensate beyond the Thomas-Fermi approximation. We use a slave-boson model to describe the strongly interacting condensate and derive a generalized nonlinear Schrodinger equation with a kinetic term for the rotating condensate. In comparison with previous calculations, based on the Thomas-Fermi approximation, significant improvements are found in regions where the condensate in a trap potential is not smooth. The critical angular velocity of the vortex formation is higher than in the Thomas-Fermi prediction.
Resumo:
The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.
Resumo:
We discuss the derivation of an equivalent polarization potential independent of angular momentum l for use in the optical Schrodinger equation that describes the elastic scattering of heavy ions. Three different methods are used for this purpose. Application of our theory to the low energy scattering of light heavy-ion systems at near-barrier energies is made. It is found that the notion of an l-independent polarization potential has some validity but cannot be a good substitute for the l-dependent local equivalent Feshbach polarization potential.
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.
Resumo:
We solve the operator ordering problem for the quantum continuous integrable su(1,1) Landau-Lifshitz model, and give a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. We also show that this method, based on operator regularization and renormalization, which guarantees quantum integrability, as well as the construction of self-adjoint extensions, can be used as an alternative to the discretization procedure, and unlike the latter, is based only on integrable representations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509374]
Resumo:
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Resumo:
In this paper, employing the Ito stochastic Schrodinger equation, we extend Bell's beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm's causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm's causal dynamics regarding stationary states in quantum mechanics.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
We introduce a time-dependent projected Gross-Pitaevskii equation to describe a partially condensed homogeneous Bose gas, and find that this equation will evolve randomized initial wave functions to equilibrium. We compare our numerical data to the predictions of a gapless, second order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)], and find that we can determine a temperature when the theory is valid. As the Gross-Pitaevskii equation is nonperturbative, we expect that it can describe the correct thermal behavior of a Bose gas as long as all relevant modes are highly occupied. Our method could be applied to other boson fields.