241 resultados para Scalloped Hammerhead Sharks
Resumo:
Desde los años 70' Argentina se consolidó como un país pesquero, siendo la merluza hubbsi la principal especie capturada y exportada. Desde fines de la década de 1990 pequeñas y medianas empresas supieron conciliar extracción, manufactura y mercados explotando especies costeras, entre las cuales se destaca la anchoíta. El presente trabajo se centra en las estrategias de gestión, organización e innovación de Coomarpes e Indupesa, empresas que han subsistido en un mercado dominado por un poderoso oligopolio interno y por capitales foráneos que depredan el mar argentino y exportan productos con escaso agregado de valor hacia mercados europeos y asiáticos
Resumo:
Seventy meters of Cenozoic and Mesozoic pelagic clay cored at DSDP Sites 595 and 596 provide the basis for a preliminary analysis of ichthyolith biostratigraphy in the southwest Pacific. A most likely order of the more reliable ichthyolith events is compared with a synthesis of ichthyolith biostratigraphy in the North Pacific and with dated composite ranges. The resultant preliminary ichthyolith stratigraphy suggests that the Cenozoic is represented by the upper 20 m at Site 596 and 16 to 22 m at Site 595. Mixing of taxa precludes a clear recognition of the Cretaceous/Tertiary boundary at Site 595. The occurrence of 13 newly described subtypes is recorded in Mesozoic sediments at Sites 595 and 596. These new subtypes and previously described Mesozoic forms may be useful for recognizing Mesozoic subdivisions when their occurrences in sequences dated by other microfossils are investigated.
Resumo:
Leg 190 was the first of a two-leg program across the Nankai accretionary prism and Trough, offshore Japan, aiming to evaluate existing models for prism evolution and to constrain syntectonic sedimentation, deformation styles, mechanical properties, and prism hydrology (Moore, Taira, Klaus, et al., 2001; Moore et al., 2001). More than 400 volcanic ash and siliceous claystone (altered ash) layers were penetrated and sampled during drilling of the six sites from two transects across the accretionary prism (Sites 1173-1178). In sites from the subducting Shikoku Basin (Sites 1173 and 1177) and in the trench axis (Site 1174), recognition of ash layers and diagenetically altered ashes was initially important in defining major lithostratigraphic units. However, it is clear that understanding the diagenesis of the volcanic ashes has considerable implications for prism evolution, mechanical properties, prism hydrology, geochemistry, and fluid flow in the accretionary prism and associated subducting sediments (cf. Masuda et al., 1996, doi 10.1346/CCMN.1996.0440402). Particle size, chemical composition, temperature, depth of burial, and time are all thought to be factors that may affect volcanic ash diagenesis and preservation (Kuramoto et al., 1992, doi:10.2973/odp.proc.sr.127128-2.235.1992; Underwood et al., 1993, doi:10.2973/odp.proc.sr.131.137.1993). The overall aim of this research is to evaluate factors influencing volcanic ash diagenesis in the Nankai Trough area. This data report presents just the results of the sedimentological and petrographic analysis of the volcanic ashes and siliceous claystones from Sites 1173, 1174, and 1177. It is anticipated that when the results of additional geochemical analysis of these lithologies is available a more meaningful evaluation of factors influencing volcanic ash alteration will be possible.
Resumo:
Increased oceanic uptake of atmospheric carbon dioxide (CO2) is a threat to marine organisms and ecosystems. Among the most dramatic consequences predicted to date are behavioural impairments in marine fish which appear to be caused by the interference of elevated CO2 with a key neurotransmitter receptor in the brain. In this study, we tested the effects of elevated CO2 on the foraging and shelter-seeking behaviours of the reef-dwelling epaulette shark, Hemiscyllium ocellatum. Juvenile sharks were exposed for 30 d to control CO2 (400 µatm) and two elevated CO2 treatments (615 and 910 µatm), consistent with medium- and high-end projections for ocean pCO2 by 2100. Contrary to the effects observed in teleosts and in some other sharks, behaviour of the epaulette shark was unaffected by elevated CO2. A potential explanation is the remarkable adaptation of H. ocellatum to low environmental oxygen conditions (hypoxia) and diel fluctuations in CO2 encountered in their shallow reef habitat. This ability translates into behavioural tolerance of near-future ocean acidification, suggesting that behavioural tolerance and subsequent adaptation to projected future CO2 levels might be possible in some other fish, if adaptation can keep pace with the rate of rising CO2 levels.
Resumo:
To address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard vs. retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this we compared retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the FAO global elasmobranch landings by average retention rates and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. Our results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.
Resumo:
Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.
Resumo:
Late Oligocene to late Pliocene vertical water-mass stratification along depth traverses in the northern Indian Ocean is depicted in this paper by benthic foraminifer index faunas. During most of this time, benthic faunas indicate well-oxygenated, bottom-water conditions at all depths except under the southern Indian upwelling and in the Pliocene in the southern Arabian Sea. Faunas suggest the initiation of lower oxygen conditions at intermediate depths in the northern Indian Ocean beginning in Oligocene Zone P21a. Lower oxygen conditions intensified during primary productivity pulses, possibly related to increased upwelling vigor, in the latest Oligocene and throughout most of the late middle through late Miocene. During times of elevated primary production, there may be more oxygen flux into sedimentary pore waters and the shallow infaunal habitat may become more oxygenated. One criterion for locating the source of "new" water masses is vertical homogeneity of benthic foraminifer indexes for well-oxygenated water masses from intermediate through abyssal depths. In the northern Mascarene Basin, this type of faunal homogeneity with depth corroborates the proposal that the northern Indian Ocean was an area of sinking well-oxygenated waters through most of the Miocene before Zone N17. Oxygenated, possibly "new" intermediate-water masses in the low- to middle-latitude Mascarene and Central Indian basins first developed in the late Oligocene. These well-oxygenated waters were probably more fertile than the Antarctic Intermediate Waters (AAIW) that cover intermediate depths in these areas today. Production of intermediate waters more similar to modern AAIW is indicated by the sparse benthic population of epifaunal rotaloid species in the northern Mascarene Basin during middle Miocene Zone N9 and from early through late Pliocene time. Deep-water characteristics are more difficult to interpret because of the extensive redeposition at the deeper sites. Redeposited intermediate, rather than shallow, water fossils and erosion from north to south in the Mascarene Basin are incompatible with the sluggish circulation from south to north through the western Indian Ocean basins today. Such erosion could result from the vigorous sinking of an intermediate-depth water mass of northern origin. Before late Oligocene Zone P22, benthic faunas indicate a twofold subdivision of the troposphere, with the boundary between upper and lower well-oxygenated water masses located from 2500-3000 mbsl. No characteristic bottom-water fauna developed before the end of late Oligocene Zone P22. Deep and abyssal benthic indexes suggest the development of water masses similar to those of the present day in the latest Miocene. Faunas containing deep-water benthic indexes, including the uvigerinids, suggestive of a water mass similar to modern Indian Deep Water (IDW), appeared during the late Miocene in the northern Mascarene and Central Indian basins. In the early Pliocene, this deep-water fauna was found only in the Central Indian Basin, whereas a fauna typical of modern Antarctic Bottom Water (AABW) spread through deep waters at 2800 mbsl in the Mascarene Basin. By late Pliocene Zone N21, however, deep-water faunas similar to their modern analogs were developed in both the eastern and western basins. Abyssal faunas, studied only in the Mascarene Basin, show more or less similarity to those under modern AABW. Bottom-water faunas containing Nuttallides umbonifera or Epistominella exiguua were first differentiated at the end of Zone P22, then appeared episodically during the early Miocene. These AABW-type faunas reappeared and migrated updepth into deep waters during the glacial episodes at the end of the Miocene and at the beginning of the Pliocene. By late Pliocene Zone N21, however, a bottom-water fauna similar to that under eastern Indian Bottom Water (IBW) developed in the Mascarene Basin. Modern bottom-water characteristics of the Mascarene Basin must have developed after ZoneN21.
Resumo:
This data set provides a high-resolution digital elevation model (DEM) of a thermokarst depression (~7 km²) on ice-complex deposits in the Arctic Lena Delta, Siberia. The DEM based on a geodetic field survey and was used for quantitative land surface analyses and detailed description of the thermokarst depression morphology. Detailed morphometrical analyses, volume calculations, and solar radiation modeling were performed and statistically analyzed by Ulrich et al. (2010) to investigate the asymmetrical thermokarst depression development and directed lake migration previously proposed by Morgenstern et al. (2008). Furthermore, the high-resolution DEM in combination with satellite data allowed detailed analyses of spatial and temporal landscape changes due to thermokarst development (Günther, 2009).
Resumo:
The contribution of several individual ribozyme⋅substrate base pairs to binding and catalysis has been investigated using hammerhead ribozyme substrates that were truncated at their 3′ or 5′ ends. The base pairs at positions 1.1–2.1 and 15.2–16.2, which flank the conserved core, each contribute 104-fold in the chemical step, without affecting substrate binding. In contrast, base pairs distal to the core contribute to substrate binding but have no effect on the chemical step. These results suggest a “fraying model” in which each ribozyme⋅substrate helix can exist in either an unpaired (“open”) state or a helical (“closed”) state, with the closed state required for catalysis. The base pairs directly adjacent to the conserved core contribute to catalysis by allowing the closed state to form. Once the number of base pairs is sufficient to ensure that the closed helical state predominates, additional residues provide stabilization of the helix, and therefore increase binding, but have no further effect on the chemical step. Remarkably, the >5 kcal/mol free energy contribution to catalysis from each of the internal base pairs is considerably greater than the free energy expected for formation of a base pair. It is suggested that this unusually large energetic contribution arises because free energy that is typically lost in constraining residues within a base pair is expressed in the transition state, where it is used for positioning. This extends the concept of “intrinsic binding energy” from protein to RNA enzymes, suggesting that intrinsic binding energy is a fundamental feature of biological catalysis.
Resumo:
Strand-specific transcripts of a satellite DNA of the newts, Notophthalmus and Triturus, are present in cells in monomeric and multimeric sizes. These transcripts undergo self-catalyzed, site-specific cleavage in vitro: the reaction requires Mg2+ and is mediated by a “hammerhead” domain. Transcription of the newt ribozyme appears to be performed by RNA polymerase II under the control of a proximal sequence element and a distal sequence element. In vitro, the newt ribozyme can cleave in trans an RNA substrate, suggesting that in vivo it might be involved in RNA processing events, perhaps as a riboprotein complex. Here we show that the newt ribozyme is in fact present as a riboprotein particle of about 12 S in the oocytes of Triturus. In addition, reconstitution experiments and gel-shift analyses show that a complex is assembled in vitro on the monomeric ribozyme molecules. UV cross-linking studies identify a few polypeptide species, ranging from 31 to 65 kDa, associated to the newt ribozyme with different affinities. Finally, we find that an appropriate oligoribonucleotide substrate is specifically cleaved by the riboproteic activity in S-100 ovary extracts.
Resumo:
The peptide hormone gastrin was long believed to be specific for higher vertebrates, whereas its homologue, cholecystokinin (CCK), has been assumed to represent the original ancestor of the CCK/gastrin family. To trace the divergence of the CCK/gastrin family beyond birds, reptiles, and amphibians we have now examined sharks. Distinct CCK and gastrin peptides were identified in two shark species, the spiny dogfish (Squalus acanthias) and the porbeagle (Lamna cornubica). The corresponding genes and cDNAs were isolated and sequenced from the spiny dogfish. Comparison with several vertebrate species show that the CCK gene and peptide structures have been considerably more conserved than the corresponding gastrin structures. Alignment of the dogfish prepropeptides displays similarities that support the hypothesis that they share a common ancestor. Our findings move the CCK/gastrin family segregation back to at least 350 million years ago. This event must have occurred before, or perhaps during, the evolution of cartilagenous fishes, probably concomitant with the occurrence of gastric acid secretion.