979 resultados para Salts.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of several low-melting salts containing trihalide ions, namely 1-ethyl-3-methylimidazolium tribromide ([C2mim][Br3]), 1-ethyl-1-methylpyrrolidinium tribromide ([C2mpyr][Br3]), and 1-propyl-1-methylpyrrolidinium triiodide ([C3mpyr][I3]), are reported for the first time. Thermal analysis reveals that the tribromide salts are lower-melting than their monohalide analogues. Analysis of the crystal structures allows examination of the influence of the anions on the physical properties of the salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microstructural characterisation of the family of N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts was carried out by observation of powder surface morphologies with the aim of extending the microstructure-property correlation. Inherent difficulties limiting extensive studies of organic solids by SEM, including volatility under vacuum, charging due to electron beam irradiation, and air-sensitivity were overcome with the use of a Field Emission SEM and cryostage attachment. This technique, providing considerable improvements in image quality at low accelerating voltages, enabled direct observation of complex microstructural features in samples exhibiting high temperature plastic crystalline phases (N,N-dimethylpyrrolidinium tetrafluoroborate [P11BF4]; N-methyl-N-ethylpyrrolidinium tetrafluoroborate [P12BF4]; N-methyl-N-propylpyrrolidinium tetrafluoroborate [P13BF4]). Extensive lattice imperfections including grain boundaries, slip planes and dislocation pits were observed within particles of approximately 200 mgrm diameter. The N-methyl-N-butylpyrrolidinium tetrafluoroborate (P14BF4) sample in this series revealed columnar single crystals with high aspect ratios. The origin of plastic flow properties is discussed using single crystal and polycrystalline slip observations and a relationship proposed between defect characteristics and transport properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast-ion conduction has been observed in the iodide and bromide salts of 1-methyl-3-ethylimidazolium at ambient temperatures. The melting point of these two compounds is above 350 K and even at 273 K the ionic conductivity in the solid-state is greater than 10−3S cm−1. Cation diffusion coefficients have been measured using fringe field gradient and/or pulse field gradient 1H NMR techniques, which indicated cation diffusion coefficients of the order of 10−10 m2 s−1 in the solid-state. Remarkably, these values are up to an order of magnitude higher than the cation diffusion coefficient in the supercooled liquid at 293 K. The activation energy for diffusion in the solid-state is extremely small, as is typical of solid-state fast-ion conductors and indicates a change in transport mechanism from the melt to the crystal. The inability to detect an 127I signal together with the modelling of the conductivity using the Nernst–Einstein equation suggests that the solid-state conduction is primarily due to cation diffusion. The solid-state fast-ion conduction is most likely related to vacancy diffusion along the cation layers in the crystal. The temperature dependence of the NMR signal intensity indicates that the number of mobile species is increasing with increasing temperature with an activation energy of approximately 20–30 kJ mol−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR provides a tool whereby the dynamic properties of specific nuclei can be investigated. In the present study, a poly(ethylene oxide-co-propylene oxide) network has been used as the polymer host to prepare solid polymer electrolytes (SPE) containing either LiClO4 or LiCF3SO3. In addition, a low molecular weight plasticizer [propylene carbonate (PC), dimethyl formamide (DMF) or tetraglyme] has been added to several of the samples to enhance the mobility of the polymer and, thus, of the ionic species. The effects of plasticizer and salt concentration on the ionic structure and mobility in these SPEs, as measured by NMR relaxation times, and correlation to the conductivity behaviour in these systems are discussed. Temperature dependent triflate diffusion coefficients, as measured by Pulsed Field Gradient 19F-NMR, in plasticized SPEs are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts were synthesised. The spectroscopic, physical and electrochemical characteristics of this family of salts have been investigated with respect to potential usage as ionic solvents and electrolytes. The lowest melting point among the family is 64°C for the N-methyl-N-propylpyrrolidinium tetrafluoroborate (P13BF4). This is sufficiently low to enable this salt to be useful as an ionic liquid in chemical synthesis involving reactions above 70°C. Most of the compounds exhibit one or more solid–solid transitions below the melting point, this behaviour is thought to indicate the existence of plastic crystal phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of N-methyl-N-alkylpyrrolidinium nonafluoro-1-butanesulfonate salts were synthesised and characterised. The thermophysical characteristics of this family of salts have been investigated with respect to potential use as ionic liquids and solid electrolytes. N-Methyl-N-butylpyrrolidinium nonafluoro-1-butanesulfonate (p1,4NfO) has the lowest melting point of the family, at 94 °C. Electrochemical analysis of p1,4 NfO in the liquid state shows an electrochemical window of ~6 V. All compounds exhibit one or more solid–solid transitions at sub-ambient temperatures, indicating the existence of plastic crystal phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and characterization of a series of novel salts, based on the N-methyl-N-alkylpyrrolidinium or quaternary ammonium organic cations coupled with sulfonate type anions, namely the mesylate (CH3SO3) and tosylate (CH3C6H4SO3) anions are reported. These salts are analogues of the previously described organic cation bis(trifluoromethanesulfonyl)amide (TFSA) salts that form useful ionic liquids of interest in “Green” synthesis. Several of the salts are liquid below 50 °C, e.g. tributylhexylammonium tosylate and ethylmethylpyrrolidinium mesylate and one is liquid at and below room temperature (tributylhexylammonium mesylate). These new salts have a cost advantage over salts of the TFSA, PF6 and CF3SO3 anions. Electrochemical and thermal properties have been investigated. The salts are stable to beyond 100 °C and exhibit electrochemical potential windows of at least ±2 V vs. Ag/Ag+. Some of the salts exhibit multiple crystalline phases below their melting points, potentially indicative of plastic crystal behaviour, whilst others showed more simple solid–liquid behaviour. Many of the salts were found to be glass forming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of salts, based on the N-methyl-N-alkylpyrrolidinium cation and the PF6- anion, are reported and their thermal properties described for alkyl = Me, Et, Pr, Bu, Hx, and Hp. X-ray structures of several of the salts are also reported. The N,N-dimethylpyrrolidinium hexafluorophosphate has a melting point greater than 390 °C; however, the N-methyl-N-butylpyrrolidinium derivative melts at 70 °C. Most of the PF6- salts were observed to have lower melting points in comparison with the analogous iodide salts. Most of the salts exhibit one or more thermal transitions prior to melting and a final entropy of melting less than 20 J K-1 mol-1, behavior which has previously been associated with the formation of plastic crystal phases. Good crystal structure solutions were obtained at low temperatures in the case of the alkyl = propyl and heptyl derivatives. The loss of diffraction peaks and changes in symmetry at higher temperatures indicated the presence of dynamic rotational disorder, supporting the understanding that the plastic properties arise from rotational motions in the crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of a 1,2,3-trisubstituted imidazolium salt of the bis[(trifluoromethyl)sulfonyl)]amide ion is presented; this salt is a prototype for similar, room temperature liquid, imidazolium salts; the structure shows that the anion and cation interact weakly, with little if any hydrogen bonding present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambient temperature conductive plastic crystal phases of alkylmethylpyrrolidinium trifluoromethanesulfonyl amide (TFSA) salts are studied using positron annihilation lifetime spectroscopy (PALS) to examine the role of vacancy size and concentration in conductivity. The ethyl methylpyrrolidinium TFSA salt (P12 TFSA) has larger vacancies and a greater concentration of vacancies than the dimethylpyrrolidinium TFSA salt (P11 TFSA) over the temperature range investigated. The relative vacancy size and concentration vary with temperature and reflect the solid–solid transitions as measured by differential scanning calorimetry (DSC). P12 TFSA has greater conductivity than P11 TFSA and has furthermore been observed to exhibit slip planes at room temperature. P12 TFSA has greater entropy changes associated with solid–solid phase transitions below the melting point than P11 TFSA possibly indicating greater rotational freedom in P12 TFSA. These results support the notion that the diffusion, conduction, and plastic flow properties of the pyrrolidinium TFSA salts are derived from the lattice vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel salts based the pyrrolidinium cation [Cnmpyr]+ (where n denote the number of carbons in the straight alkyl chain) and either the [NPf2] or [CTf3] anions have been synthesized and characterized to determine their thermal behaviour, stability, and conductivity. [C1mpyr][NPf2], [C2mpyr][NPf2], and [C1mpyr][CTf3] exhibit behaviour indicative of a plastic crystal phase. Both [C3mpyr][NPf2] and [C4mpyr][NPf2] are RTILs, while all of the [CTf3]salts, have melting points above 60°C. [C3mpyr][NPf2] exhibited the widest electrochemical window of 5.5 V. The [NPf2]– salt exhibited similar reductive limits to the [NTf2] anion, –3.2 V versus Fc+|Fc, while [CTf3] had lower reductive stability. The [CTf3] salts were more stable towards oxidation, +2.5 V versus Fc+|Fc, compared to the [NPf2] and [NTf2] salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New families of salts viz. quaternary ammonium, N-alkyl-N-methylpyrrolidinium or 1-alkyl-3-methylimidazolium dicyanamides, Cat+N(CN)2, are low melting compounds, most being liquid at rt, water-miscible and have low (for ionic liquids) viscosity at rt, e.g.η = 21 cP for 1-ethyl-3-methylimidazolium dicyanamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of molten salts is reported, based on the N-alkyl, N-alkyl pyrrolidinium cation and the bis(trifluoromethane sulfonyl)imide anion. Some of the members of the family are molten at room temperature, while the smaller and more symmetrical members have melting points around 100 °C. Of the room-temperature molten salt examples, the methyl butyl derivative exhibits the highest conductivity; at 2 × 10-3 S/cm this is the highest molten salt conductivity observed to date at room temperature among the ammonium salts. This highly conductive behavior is rationalized in terms of the role of cation planarity. The salts also exhibit multiple crystalline phase behavior below their melting points and exhibit significant conductivity in at least their higher temperature crystal phase. For example, the methyl propyl derivative (mp = 12 °C) shows ion conductivity of 1 × 10-6 S/cm at 0 °C in its higher temperature crystalline phase.