852 resultados para Salt-tolerant variant
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.
Resumo:
The fluorescent probe dansyl cadaverine has been shown to bind strongly to mixed bile salt-phospholipid micelles containing unsaturation in the fatty acyl chains. Incorporation of cholesterol into the mixed micelles reduces the number of molecules of bound dansyl cadaverine without altering the binding affinity. These results suggest a tighter packing of the hydrocarbon matrix of the micelles in the presence of cholesterol.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
Soft matter provides diverse opportunities for the development of electrolytes for all solid state lithium batteries. Here we review soft matter solid electrolytes for lithium batteriesthat are primarily obtained starting from liquid electrolytic systems. This concept of solid electrolyte synthesis from liquid is significantly different from prevalent approaches. The novelty of our approach is discussed in the light of various fundamental issues and in relation to its application to rechargeable lithium batteries.
Resumo:
Multi-agent systems (MAS) advocate an agent-based approach to software engineering based on decomposing problems in terms of decentralized, autonomous agents that can engage in flexible, high-level interactions. This chapter introduces scalable fault tolerant agent grooming environment (SAGE), a second-generation Foundation for Intelligent Physical Agents (FIPA)-compliant multi-agent system developed at NIIT-Comtec, which provides an environment for creating distributed, intelligent, and autonomous entities that are encapsulated as agents. The chapter focuses on the highlight of SAGE, which is its decentralized fault-tolerant architecture that can be used to develop applications in a number of areas such as e-health, e-government, and e-science. In addition, SAGE architecture provides tools for runtime agent management, directory facilitation, monitoring, and editing messages exchange between agents. SAGE also provides a built-in mechanism to program agent behavior and their capabilities with the help of its autonomous agent architecture, which is the other major highlight of this chapter. The authors believe that the market for agent-based applications is growing rapidly, and SAGE can play a crucial role for future intelligent applications development. © 2007, IGI Global.
Resumo:
Sr2SbMnO6 (SSM) powders were successfully synthesized at reasonably low temperatures via molten-salt synthesis (MSS) method using eutectic composition of 0.635 Li2SO4-0.365 Na2SO4 (flux). High-temperature cubic phase SSM was stabilized at room temperature by calcining the as-synthesized powders at 900 degrees C/10 h. The phase formation and morphology of these powders were characterized via X-ray powder diffraction and scanning electron microscopy, respectively. The SSM phase formation associated with similar to 60 nm sized crystallites was also confirmed by transmission electron microscopy. The activation energy associated with the particle growth was found to be 95 +/- 5 kJ mol(-1). The dielectric constant of the tetragonal phase of the ceramic (fabricated using this cubic phase powder) with and without the flux (sulphates) has been monitored as a function of frequency (100 Hz-1 MHz) at room temperature. Internal barrier layer capacitance (IBLC) model was invoked to rationalize the dielectric properties.
Resumo:
We report the application of z-COSY experiment and a band selected version of it by employing a selective 90 degrees pulse entitled BASE-z-COSY for precise chiral discrimination, quantification of enantiomeric excess and the analyses of the H-1 NMR spectra of chiral molecules aligned in the chiral liquid crystalline solvent poly-gamma-benzyl-L-glutamate (PBLG). We have demonstrated their applicability for obtaining very high resolution in the H-1 NMR spectra of small organic molecules. It is well known that the commonly employed z-COSY experiment disentangles the spectral complexity, provides pure phase spectra with high resolution, aids in the complete spectral analyses, in addition to yielding information on relative signs of the Couplings. The BASE-z-COSY experiment possesses all these properties, permits the measure of enantiomeric excess, in addition to large saving of instrument time.
Resumo:
A Pt-Au alloy catalyst of varying compositions is prepared by codeposition of Pt and Au nanoparticles onto a carbon support to evaluate its electrocatalytic activity toward an oxygen reduction reaction (ORR) with methanol tolerance in direct methanol fuel cells. The optimum atomic weight ratio of Pt to Au in the carbon-supported Pt-Au alloy (Pt-Au/C) as established by cell polarization, linear-sweep voltammetry (LSV), and cyclic voltammetry (CV) studies is determined to be 2:1. A direct methanol fuel cell (DMFC) comprising a carbon-supported Pt-Au (2:1) alloy as the cathode catalyst delivers a peak power density of 120 mW/cm2 at 70 °C in contrast to the peak power density value of 80 mW/cm2 delivered by the DMFC with carbon-supported Pt catalyst operating under identical conditions. Density functional theory (DFT) calculations on a small model cluster reflect electron transfer from Pt to Au within the alloy to be responsible for the synergistic promotion of the oxygen-reduction reaction on a Pt-Au electrode.
Resumo:
γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.
Resumo:
γ-Y2Si2O7 is a promising candidate both for high temperature structural applications and as thermal barrier coatings due to its unique combination of properties, such as high melting point, good machinability, high thermal stability, low linear thermal expansion coefficient (3.9 × 10-6 K-1, 25-1400 °C) and low thermal conductivity (<3 W/m K above 300 °C). In this work, the hot corrosion behavior of γ-Y2Si2O7 in strongly basic Na2CO3 molten salt at 850-1000 °C for 20 h in flowing air was investigated. In the employed conditions, multi-layer corrosion scales with total thickness less than 90 μm were formed. At 850-900 °C, the outmost layer of the scale was composed of the reprecipitation of Y2O3, the bottom of a Si-rich Na2O·xSiO2 (x > 3.65) melt layer, and the middle of a NaYSiO4 layer. At 1000 °C, the corrosion products turned out to be a mixture of NaY9Si6O26 and Si-rich Na2O·xSiO2 (x > 3.65). In all cases, a thin layer of protective SiO2 formed under the Na2O·xSiO2 melt and protected the bulk material from further corrosion.
Resumo:
Multiple sclerosis (MS) is a chronic relapsing-remitting inflammatory disease of the central nervous system characterized by oligodendrocyte damage, demyelination and neuronal death. Genetic association studies have shown a 2-fold or greater prevalence of the HLA-DRB1*1501 allele in the MS population compared with normal Caucasians. In discovery cohorts of Australasian patients with MS (total 2941 patients and 3008 controls), we examined the associations of 12 functional polymorphisms of P2X7, a microglial/macrophage receptor with proinflammatory effects when activated by extracellular adenosine triphosphate (ATP). In discovery cohorts, rs28360457, coding for Arg307Gln was associated with MS and combined analysis showed a 2-fold lower minor allele frequency compared with controls (1.11% for MS and 2.15% for controls, P = 0.0000071). Replication analysis of four independent European MS case–control cohorts (total 2140 cases and 2634 controls) confirmed this association [odds ratio (OR) = 0.69, P = 0.026]. A meta-analysis of all Australasian and European cohorts indicated that Arg307Gln confers a 1.8-fold protective effect on MS risk (OR = 0.57, P = 0.0000024). Fresh human monocytes heterozygous for Arg307Gln have >85% loss of ‘pore’ function of the P2X7 receptor measured by ATP-induced ethidium uptake. Analysis shows Arg307Gln always occurred with 270His suggesting a single 307Gln–270His haplotype that confers dominant negative effects on P2X7 function and protection against MS. Modeling based on the homologous zP2X4 receptor showed Arg307 is located in a region rich in basic residues located only 12 Å from the ligand binding site. Our data show the protective effect against MS of a rare genetic variant of P2RX7 with heterozygotes showing near absent proinflammatory ‘pore’ function.
Resumo:
This research addresses efficient use of the available energy in resource constrained mobile sensor nodes to prevent early depletion of the battery and maximize the packet delivery rate. This research contributes two energy-aware enhancement strategies to improve the network lifetime and delivery probability for energy constrained applications in the delay-tolerant networking environment.
Resumo:
We consider systems composed of a base system with multiple “features” or “controllers”, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a way that guarantees the “maximal” use of each feature. The methodology is based on the notion of “conflict-tolerant” features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority-based composition scheme for such features, which ensures that each feature is maximally utilized. We also provide a formal framework for specifying, verifying, and synthesizing such features. In particular we obtain a compositional technique for verifying systems developed in this framework.