937 resultados para STRUCTURE-BASED DRUG DESIGN
Resumo:
Indoleamine 2,3-dioxygenase (IDO) is an important therapeutic target for the treatment of diseases such as cancer that involve pathological immune escape. We have used the evolutionary docking algorithm EADock to design new inhibitors of this enzyme. First, we investigated the modes of binding of all known IDO inhibitors. On the basis of the observed docked conformations, we developed a pharmacophore model, which was then used to devise new compounds to be tested for IDO inhibition. We also used a fragment-based approach to design and to optimize small organic molecule inhibitors. Both approaches yielded several new low-molecular weight inhibitor scaffolds, the most active being of nanomolar potency in an enzymatic assay. Cellular assays confirmed the potential biological relevance of four different scaffolds.
Resumo:
3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.
Resumo:
Wastewater-based epidemiology consists in acquiring relevant information about the lifestyle and health status of the population through the analysis of wastewater samples collected at the influent of a wastewater treatment plant. Whilst being a very young discipline, it has experienced an astonishing development since its firs application in 2005. The possibility to gather community-wide information about drug use has been among the major field of application. The wide resonance of the first results sparked the interest of scientists from various disciplines. Since then, research has broadened in innumerable directions. Although being praised as a revolutionary approach, there was a need to critically assess its added value, with regard to the existing indicators used to monitor illicit drug use. The main, and explicit, objective of this research was to evaluate the added value of wastewater-based epidemiology with regards to two particular, although interconnected, dimensions of illicit drug use. The first is related to trying to understand the added value of the discipline from an epidemiological, or societal, perspective. In other terms, to evaluate if and how it completes our current vision about the extent of illicit drug use at the population level, and if it can guide the planning of future prevention measures and drug policies. The second dimension is the criminal one, with a particular focus on the networks which develop around the large demand in illicit drugs. The goal here was to assess if wastewater-based epidemiology, combined to indicators stemming from the epidemiological dimension, could provide additional clues about the structure of drug distribution networks and the size of their market. This research had also an implicit objective, which focused on initiating the path of wastewater- based epidemiology at the Ecole des Sciences Criminelles of the University of Lausanne. This consisted in gathering the necessary knowledge about the collection, preparation, and analysis of wastewater samples and, most importantly, to understand how to interpret the acquired data and produce useful information. In the first phase of this research, it was possible to determine that ammonium loads, measured directly in the wastewater stream, could be used to monitor the dynamics of the population served by the wastewater treatment plant. Furthermore, it was shown that on the long term, the population did not have a substantial impact on consumption patterns measured through wastewater analysis. Focussing on methadone, for which precise prescription data was available, it was possible to show that reliable consumption estimates could be obtained via wastewater analysis. This allowed to validate the selected sampling strategy, which was then used to monitor the consumption of heroin, through the measurement of morphine. The latter, in combination to prescription and sales data, provided estimates of heroin consumption in line with other indicators. These results, combined to epidemiological data, highlighted the good correspondence between measurements and expectations and, furthermore, suggested that the dark figure of heroin users evading harm-reduction programs, which would thus not be measured by conventional indicators, is likely limited. In the third part, which consisted in a collaborative study aiming at extensively investigating geographical differences in drug use, wastewater analysis was shown to be a useful complement to existing indicators. In particular for stigmatised drugs, such as cocaine and heroin, it allowed to decipher the complex picture derived from surveys and crime statistics. Globally, it provided relevant information to better understand the drug market, both from an epidemiological and repressive perspective. The fourth part focused on cannabis and on the potential of combining wastewater and survey data to overcome some of their respective limitations. Using a hierarchical inference model, it was possible to refine current estimates of cannabis prevalence in the metropolitan area of Lausanne. Wastewater results suggested that the actual prevalence is substantially higher compared to existing figures, thus supporting the common belief that surveys tend to underestimate cannabis use. Whilst being affected by several biases, the information collected through surveys allowed to overcome some of the limitations linked to the analysis of cannabis markers in wastewater (i.e., stability and limited excretion data). These findings highlighted the importance and utility of combining wastewater-based epidemiology to existing indicators about drug use. Similarly, the fifth part of the research was centred on assessing the potential uses of wastewater-based epidemiology from a law enforcement perspective. Through three concrete examples, it was shown that results from wastewater analysis can be used to produce highly relevant intelligence, allowing drug enforcement to assess the structure and operations of drug distribution networks and, ultimately, guide their decisions at the tactical and/or operational level. Finally, the potential to implement wastewater-based epidemiology to monitor the use of harmful, prohibited and counterfeit pharmaceuticals was illustrated through the analysis of sibutramine, and its urinary metabolite, in wastewater samples. The results of this research have highlighted that wastewater-based epidemiology is a useful and powerful approach with numerous scopes. Faced with the complexity of measuring a hidden phenomenon like illicit drug use, it is a major addition to the panoply of existing indicators. -- L'épidémiologie basée sur l'analyse des eaux usées (ou, selon sa définition anglaise, « wastewater-based epidemiology ») consiste en l'acquisition d'informations portant sur le mode de vie et l'état de santé d'une population via l'analyse d'échantillons d'eaux usées récoltés à l'entrée des stations d'épuration. Bien qu'il s'agisse d'une discipline récente, elle a vécu des développements importants depuis sa première mise en oeuvre en 2005, notamment dans le domaine de l'analyse des résidus de stupéfiants. Suite aux retombées médiatiques des premiers résultats de ces analyses de métabolites dans les eaux usées, de nombreux scientifiques provenant de différentes disciplines ont rejoint les rangs de cette nouvelle discipline en développant plusieurs axes de recherche distincts. Bien que reconnu pour son coté objectif et révolutionnaire, il était nécessaire d'évaluer sa valeur ajoutée en regard des indicateurs couramment utilisés pour mesurer la consommation de stupéfiants. En se focalisant sur deux dimensions spécifiques de la consommation de stupéfiants, l'objectif principal de cette recherche était focalisé sur l'évaluation de la valeur ajoutée de l'épidémiologie basée sur l'analyse des eaux usées. La première dimension abordée était celle épidémiologique ou sociétale. En d'autres termes, il s'agissait de comprendre si et comment l'analyse des eaux usées permettait de compléter la vision actuelle sur la problématique, ainsi que déterminer son utilité dans la planification des mesures préventives et des politiques en matière de stupéfiants actuelles et futures. La seconde dimension abordée était celle criminelle, en particulier, l'étude des réseaux qui se développent autour du trafic de produits stupéfiants. L'objectif était de déterminer si cette nouvelle approche combinée aux indicateurs conventionnels, fournissait de nouveaux indices quant à la structure et l'organisation des réseaux de distribution ainsi que sur les dimensions du marché. Cette recherche avait aussi un objectif implicite, développer et d'évaluer la mise en place de l'épidémiologie basée sur l'analyse des eaux usées. En particulier, il s'agissait d'acquérir les connaissances nécessaires quant à la manière de collecter, traiter et analyser des échantillons d'eaux usées, mais surtout, de comprendre comment interpréter les données afin d'en extraire les informations les plus pertinentes. Dans la première phase de cette recherche, il y pu être mis en évidence que les charges en ammonium, mesurées directement dans les eaux usées permettait de suivre la dynamique des mouvements de la population contributrice aux eaux usées de la station d'épuration de la zone étudiée. De plus, il a pu être démontré que, sur le long terme, les mouvements de la population n'avaient pas d'influence substantielle sur le pattern de consommation mesuré dans les eaux usées. En se focalisant sur la méthadone, une substance pour laquelle des données précises sur le nombre de prescriptions étaient disponibles, il a pu être démontré que des estimations exactes sur la consommation pouvaient être tirées de l'analyse des eaux usées. Ceci a permis de valider la stratégie d'échantillonnage adoptée, qui, par le bais de la morphine, a ensuite été utilisée pour suivre la consommation d'héroïne. Combinée aux données de vente et de prescription, l'analyse de la morphine a permis d'obtenir des estimations sur la consommation d'héroïne en accord avec des indicateurs conventionnels. Ces résultats, combinés aux données épidémiologiques ont permis de montrer une bonne adéquation entre les projections des deux approches et ainsi démontrer que le chiffre noir des consommateurs qui échappent aux mesures de réduction de risque, et qui ne seraient donc pas mesurés par ces indicateurs, est vraisemblablement limité. La troisième partie du travail a été réalisée dans le cadre d'une étude collaborative qui avait pour but d'investiguer la valeur ajoutée de l'analyse des eaux usées à mettre en évidence des différences géographiques dans la consommation de stupéfiants. En particulier pour des substances stigmatisées, telles la cocaïne et l'héroïne, l'approche a permis d'objectiver et de préciser la vision obtenue avec les indicateurs traditionnels du type sondages ou les statistiques policières. Globalement, l'analyse des eaux usées s'est montrée être un outil très utile pour mieux comprendre le marché des stupéfiants, à la fois sous l'angle épidémiologique et répressif. La quatrième partie du travail était focalisée sur la problématique du cannabis ainsi que sur le potentiel de combiner l'analyse des eaux usées aux données de sondage afin de surmonter, en partie, leurs limitations. En utilisant un modèle d'inférence hiérarchique, il a été possible d'affiner les actuelles estimations sur la prévalence de l'utilisation de cannabis dans la zone métropolitaine de la ville de Lausanne. Les résultats ont démontré que celle-ci est plus haute que ce que l'on s'attendait, confirmant ainsi l'hypothèse que les sondages ont tendance à sous-estimer la consommation de cannabis. Bien que biaisés, les données récoltées par les sondages ont permis de surmonter certaines des limitations liées à l'analyse des marqueurs du cannabis dans les eaux usées (i.e., stabilité et manque de données sur l'excrétion). Ces résultats mettent en évidence l'importance et l'utilité de combiner les résultats de l'analyse des eaux usées aux indicateurs existants. De la même façon, la cinquième partie du travail était centrée sur l'apport de l'analyse des eaux usées du point de vue de la police. Au travers de trois exemples, l'utilisation de l'indicateur pour produire du renseignement concernant la structure et les activités des réseaux de distribution de stupéfiants, ainsi que pour guider les choix stratégiques et opérationnels de la police, a été mise en évidence. Dans la dernière partie, la possibilité d'utiliser cette approche pour suivre la consommation de produits pharmaceutiques dangereux, interdits ou contrefaits, a été démontrée par l'analyse dans les eaux usées de la sibutramine et ses métabolites. Les résultats de cette recherche ont mis en évidence que l'épidémiologie par l'analyse des eaux usées est une approche pertinente et puissante, ayant de nombreux domaines d'application. Face à la complexité de mesurer un phénomène caché comme la consommation de stupéfiants, la valeur ajoutée de cette approche a ainsi pu être démontrée.
Resumo:
We developed a nanoparticles (NPs) library from poly(ethylene glycol)–poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a “micelle-like” or “polymer nano-aggregate” structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to “polymer nano-aggregate” particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers.
Resumo:
La present tesi està centrada en l'ús de la Teoria de Semblança Quàntica per a calcular descriptors moleculars. Aquests descriptors s'utilitzen com a paràmetres estructurals per a derivar correlacions entre l'estructura i la funció o activitat experimental per a un conjunt de compostos. Els estudis de Relacions Quantitatives Estructura-Activitat són d'especial interès per al disseny racional de molècules assistit per ordinador i, en particular, per al disseny de fàrmacs. Aquesta memòria consta de quatre parts diferenciades. En els dos primers blocs es revisen els fonaments de la teoria de semblança quàntica, així com l'aproximació topològica basada en la teoria de grafs. Ambdues teories es fan servir per a calcular els descriptors moleculars. En el segon bloc, s'ha de remarcar la programació i implementació de programari per a calcular els anomenats índexs topològics de semblança quàntica. La tercera secció detalla les bases de les Relacions Quantitatives Estructura-Activitat i, finalment, el darrer apartat recull els resultats d'aplicació obtinguts per a diferents sistemes biològics.
Resumo:
Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.
Resumo:
Comparative molecular field analysis (CoMFA) studies were conducted on a series of 100 isoniazid derivatives as anti-tuberculosis agents using two receptor-independent structural data set alignment strategies: (1) rigid-body fit, and (2) pharmacophore-based. Significant cross-validated correlation coefficients were obtained (CoMFA(1), q(2) = 0,75 and CoMFA(2), q(2) = 0.74), indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 20 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results.
Resumo:
Migrastatin, a macrolide natural product, and its structurally related analogs are potent inhibitors of cancer cell metastasis, invasion and migration. In the present work, a specialized fragment-based method was employed to develop QSAR models for a series of migrastatin and isomigrastatin analogs. Significant correlation coefficients were obtained (best model, q(2) = 0.76 and r(2) = 0.91) indicating that the QSAR models possess high internal consistency. The best model was then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results (R(2) (pred) = 0.85). The final model and the corresponding contribution maps, combined with molecular modeling studies, provided important insights into the key structural features for the anticancer activity of this family of synthetic compounds based on natural products.
Resumo:
The family of Cyclin-Dependent Kinases (CDKs) can be subdivided into two major functional groups based on their roles in cell cycle and/or transcriptional control. CDK9 is the catalytic subunit of positive transcription elongation factor b (P-TEFb). CDK9 is the kinase of the TAK complex (Tat-associated kinase complex), and binds to Tat protein of HIV, suggesting a possible role for CDK9 in AIDS progression. CDK9 complexed with its regulatory partner cyclin T1, serves as a cellular mediator of the transactivation function of the HIV Tat protein. P-TEFb is responsible for the phosphorylation of the carboxyl-terminal domain of RNA Pol II, resulting in stimulation of transcription. Furthermore, the complexes containing CDK9 induce the differentiation in distinct tissue. The CDK9/cyclin T1 complex is expressed at higher level in more differentiated primary neuroectodermal and neuroblastoma tumors, showing a correlation between the kinase expression and tumor differentiation grade. This may have clinical and therapeutical implications for these tumor types. Among the CDK inhibitors two have shown to be effective against CDK9: Roscovitine and Flavopiridol. These two inhibitors prevented the replication of human immunodeficiency virus (HIV) type 1 by blocking Tat transactivation of the HIV type 1 promoter. These compounds inhibit CDKs by binding to the catalytic domain in place of ATP, preventing transfer of a phosphate group to the substrate. More sensitive therapeutic agents of CDK9 can be designed, and structural studies can add information in the understanding of this kinase. The major features related to CDK9 inhibition will be reviewed in this article.
Resumo:
In previous studies, we identified promising anti-Trypanosoma cruzi cruzain inhibitors based on thiazolylhydrazones. To optimize this series, a number of medicinal chemistry directions were explored and new thiazolylhydrazones and thiosemicarbazones were thus synthesized. Potent cruzain inhibitors were identified, such as thiazolylhydrazones 3b and 3j, which exhibited IC(50) of 200-400 nM. Furthermore, molecular docking studies showed concordance with experimentally derived structure-activity relationships (SAR) data. In the course of this work, lead compounds exhibiting in vitro activity against both the epimastigote and trypomastigote forms of T. cruzi were identified and in vivo general toxicity analysis was subsequently performed. Novel SAR were documented, including the importance of the thiocarbonyl carbon attached to the thiazolyl ring and the direct comparison between thiosemicarbazones and thiazolylhydrazones. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme, which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effects on B-cell function. Human PNP has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Here we report the crystal structure of human PNP in complex with hypoxanthine, refined to 2.6 Angstrom resolution. The intermolecular interaction between ligand and PNP is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. In human, PNP is the only route for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and its low resolution structure has been used for drug design. Here we report the structure of human PNP solved to 2.3 Angstrom resolution using synchrotron radiation and cryocrystallographic techniques. This structure allowed a more precise analysis of the active site, generating a more reliable model for substrate binding. The higher resolution data allowed the identification of water molecules in the active site, which suggests binding partners for potential ligands. Furthermore, the present structure may be used in the new structure-based design of PNP inhibitors. (C) 2003 Published by Elsevier B.V.
Resumo:
Trypanothione reductase has long been investigated as a promising target for chemotherapeutic intervention in Chagas disease, since it is an enzyme of a unique metabolic pathway that is exclusively present in the pathogen but not in the human host, which has the analog Glutathione reductase. In spite of the present data-set includes a small number of compounds, a combined use of flexible docking, pharmacophore perception, ligand binding site prediction, and Grid-Independent Descriptors GRIND2-based 3D-Quantitative Structure-Activity Relationships (QSAR) procedures allowed us to rationalize the different biological activities of a series of 11 aryl beta-aminocarbonyl derivatives, which are inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Three QSAR models were built and validated using different alignments, which are based on docking with the TcTR crystal structure, pharmacophore, and molecular interaction fields. The high statistical significance of the models thus obtained assures the robustness of this second generation of GRIND descriptors here used, which were able to detect the most important residues of such enzyme for binding the aryl beta-aminocarbonyl derivatives, besides to rationalize distances among them. Finally, a revised binding mode has been proposed for our inhibitors and independently supported by the different methodologies here used, allowing further optimization of the lead compounds with such combined structure- and ligand-based approaches in the fight against the Chagas disease.
Resumo:
Selective modulation of liver X receptor beta (LXR beta) has been recognized as an important approach to prevent or reverse the atherosclerotic process. In the present work, we have developed robust conformation-independent fragment-based quantitative structure-activity and structure-selectivity relationship models for a series of quinolines and cinnolines as potent modulators of the two LXR sub-types. The generated models were then used to predict the potency of an external test set and the predicted values were in good agreement with the experimental results, indicating the potential of the models for untested compounds. The final 2D molecular recognition patterns obtained were integrated to 3D structure-based molecular modeling studies to provide useful insights into the chemical and structural determinants for increased LXR beta binding affinity and selectivity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Bromodomains are epigenetic reader domains that have recently become popular targets. In contrast to BET bromodomains, which have proven druggable, bromodomains from other regions of the phylogenetic tree have shallower pockets. We describe successful targeting of the challenging BAZ2B bromodomain using biophysical fragment screening and structure-based optimization of high ligand-efficiency fragments into a novel series of low-micromolar inhibitors. Our results provide attractive leads for development of BAZ2B chemical probes and indicate the whole family may be tractable.