987 resultados para STM, Synchrotron radiation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mounting evidence exists that variations in sulphur content in stalagmites are closely linked to changes in volcanic or anthropogenic atmospheric sulphur. The strong dependency of sulphur on soil pH and ecosystem storage, however, can result in a delay of several years to decades in the registration of volcanic eruptions and anthropogenic emissions by stalagmites. Here we present synchrotron-radiation based trace element analysis performed on a precisely-dated section of a stalagmite from Sofular Cave in Northern Turkey. As this section covers the time interval of the intensively studied Minoan volcanic eruption between 1600 and 1650 BC, we can test whether this vigorous eruption can be traced in a stalagmite. Of all measured trace elements, only bromine shows a clear short-lived peak at 1621±251621±25 BC, whereas sulphur and molybdenum show peaks later at 1617±251617±25 and 1589±251589±25 respectively. We suggest that all trace element peaks are related to the Minoan eruption, whereas the observed phasing of bromine, molybdenum and sulphur is related to differences in their retention rates in the soil above Sofular Cave. For the first time, we can show that bromine appears to be an ideal volcanic tracer in stalagmites, as it is a prominent volatile component in volcanic eruptions, can be easily leached in soils and rapidly transferred from the atmosphere through the soil and bedrock into the cave and stalagmite respectively. Highly resolved oxygen and carbon isotope profiles indicate that the Minoan eruption had no detectable climatic and environmental impact in Northern Turkey.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ambient concentrations of trace elements with 2 h time resolution were measured in PM10–2.5, PM2.5–1.0 and PM1.0–0.3 size ranges at kerbside, urban background and rural sites in London during winter 2012. Samples were collected using rotating drum impactors (RDIs) and subsequently analysed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). Quantification of kerb and urban increments (defined as kerb-to-urban and urban-to-rural concentration ratios, respectively), and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure. Traffic-related elements yielded the highest kerb increments, with values in the range of 10.4 to 16.6 for SW winds (3.3–6.9 for NE) observed for elements influenced by brake wear (e.g. Cu, Sb, Ba) and 5.7 to 8.2 for SW (2.6–3.0 for NE) for other traffic-related processes (e.g. Cr, Fe, Zn). Kerb increments for these elements were highest in the PM10–2.5 mass fraction, roughly twice that of the PM1.0–0.3 fraction. These elements also showed the highest urban increments (~ 3.0), although no difference was observed between brake wear and other traffic-related elements. All elements influenced by traffic exhibited higher concentrations during morning and evening rush hours, and on weekdays compared to weekends, with the strongest trends observed at the kerbside site, and additionally enhanced by winds coming directly from the road, consistent with street canyon effects. Elements related to mineral dust (e.g. Al, Si, Ca, Sr) showed significant influences from traffic-induced resuspension, as evidenced by moderate kerb (3.4–5.4 for SW, 1.7–2.3 for NE) and urban (~ 2) increments and increased concentrations during peak traffic flow. Elements related to regional transport showed no significant enhancement at kerb or urban sites, with the exception of PM10–2.5 sea salt (factor of up to 2), which may be influenced by traffic-induced resuspension of sea and/or road salt. Heavy-duty vehicles appeared to have a larger effect than passenger vehicles on the concentrations of all elements influenced by resuspension (including sea salt) and wearing processes. Trace element concentrations in London were influenced by both local and regional sources, with coarse and intermediate fractions dominated by traffic-induced resuspension and wearing processes and fine particles influenced by regional transport.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synchrotron X-ray powder diffraction was applied to the study of the effect of crystallite size on the crystal structure of ZrO(2)-10 mol% Sc(2)O(3) nanopowders synthesized by a nitrate-lysine gel-combustion route Nanopowders with different average crystallite sizes were obtained by calcination at several temperatures, ranging from 650 to 1200 degrees C The metastable t""-form of the tetragonal phase, exhibiting a cubic unit cell and tetragonal P4(2)/nmc spatial symmetry, was retained at room temperature in fine nanocrystalline powders, completely avoiding the presence of the stable rhombohedral beta phase. Differently, this phase was identified in samples calcined at high temperatures and its content increased with increasing crystallite size The critical maximum crystallite size for the retention of the mestastable t""-form resulted of about 35 nm (C) 2009 Elsevier B.V All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The region of Toledo River, Parana, Brazil is characterized by intense anthropogenic activities. Hence, metal concentrations and physical-chemical parameters of Toledo River water were determined in order to complete an environmental evaluation catalog. Samples were collected monthly during one year period at seven different sites from the source down the river mouth, physical-chemical variables were analyzed, and major metallic ions were measured. Metal analysis was performed by using the synchrotron radiation total reflection X-ray fluorescence technique. A statistical analysis was applied to evaluate the reliability of experimental data. The analysis of obtained results have shown that a strong correlation between physical-chemical parameters existed among sites 1 and 7, suggesting that organic pollutants were mainly responsible for decreasing the Toledo River water quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, the trivalent and hexavalent chromium phytoaccumulation by three living free floating aquatic macrophytes Salvinia auriculata, Pistia stratiotes, and Eicchornia crassipes was investigated in greenhouse. These plants were grown in hydroponic solutions supplied with non-toxic Cr3+ and Cr6+ chromium concentrations, performing six collections of nutrient media and plants in time from a batch system. The total chromium concentrations into Cr-doped hydroponic media and dry roots and aerial parts were assayed, by using the Synchrotron radiation X-ray fluorescence technique. The aquatic plant-based chromium removal data were described by using a nonstructural kinetic model, obtaining different bioaccumulation rate, ranging from 0.015 to 0.837 1 mg(-1) d(-1). The Cr3+ removal efficiency was about 90%, 50%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata, respectively; while it was rather different for Cr6+ one, with values about 50%, 70%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report that ammonium oleate surfactants can help the dispersion of multiwalled boron nitride nanotubes (BNNTs) in water to form a BNNT solution stable for several months, which was due to the non-covalent functionalization of nanotube surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL) analysis with synchrotron radiation source revealed that this BNNT aqueous solution preserves the intrinsic optical properties of BNNTs. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-pressure methods were applied to investigate the structural stability and hydrogen bonding of polar molecules of iodoform by synchrotron radiation X-ray diffraction and Raman spectra measurements, respectively. Up to a pressure of 40 GPa, no phase transitions were observed. The discontinuous frequency shift of the C−H stretching band is believed to be related to the enhancement of the C−H···I weak hydrogen bonds under high pressures. Ab initio calculations were performed, and the results predict the frequency shift of the C−H stretching vibration as C−H···I interacts via hydrogen bonding. The bulk modulus is 17.3 ± 0.8 GPa, with a pressure derivative of 5.2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intergallery expansion development of a series of differently modified montmorillonite polystyrene nanocomposites was directly observed with time-resolved in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. The results indicated that the interlayer expansion varied depending on the clay modification and the chemical compatibility of the clay modifiers with the styrene monomer. The influence of the differently modified clays on the free radical polymerization was also investigated, particularly the effect on the conversion of styrene and molecular weight evolution of the polymer. On the basis of the kinetic study of the polymerization of styrene in the presence of varied modified clay particles, the intergallery expansion mechanism was postulated and discussed for different composite morphologies. Such studies provide an important guideline for the design of clay modifiers and development of clay–polymer nanocomposites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of an in-situ tensometer is described along with preliminary results of x-ray line profiles from copper foils under tensile stress. The tensometer was designed and constructed on the high resolution diffraction instrument, Station 2.3 at the synchrotron radiation source (SRS) Daresbury Laboratory, and is capable of collecting data in either symmetric or asymmetric geometry including transmission and reflection modes. Experiments were carried out using 18 J..Lm thick copper foil up to strain levels of 5 % using both symmetric reflection and symmetric transmission diffraction. All profiles displayed diffraction broadening and asymmetry which increased with strain. In addition, the asymmetry observed in symmetric transmission was associated with extended tails on the low angle side of the profiles, but in symmetric reflection data the opposite asymmetry was observed. In the analysis, the measured profiles were fitted using the software TOPAS, a fundamental parameters approach to profile fitting. The instrumental profile function was characterised and modelled using annealed LaB6 powder. The diffraction broadening was then determined by refining the convolution of a Voigt function, an asymmetric exponential function and a fixed instrument function to reproduce the observed broadened profiles. The integral breadth and asymmetry results display a strong order dependence and increase almost linearly with strain. The results were interpreted by assuming crystallite size broadening in combination with dislocation broadening arising from fcc a/2( 110) {Ill } dislocations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural transition of AIN nanocrystals and nanowires were investigated simultaneously under pressures up to 37.2 GPa by in situ angle dispersive high-pressure x-ray diffraction using synchrotron radiation source and a single diamond anvil cell. The size of hexagonal AIN nanocrystals and the diameter of nanowires are 45 nm on average. A pressure-induced wurtzite to rocksalt phase transition starts at 21.5 GPa and completes at 27.8 GPa for the nanocrystals and nanowires, respectively. The high-pressure behaviors of AlN nanocrystals the same as the AIN nanowires might arise from the similar size and diameter in nanocrystals and nanowires. Hexagonal AIN nanocrystals (45 nm) display an apparent volumetric contraction as compared to the AlN nanocrystals (10 nm) which might induce the difference of transition pressure.