920 resultados para SPONTANEOUS SYMMETRY BREAKING
Resumo:
In 1931 Dirac studied the motion of an electron in the field of a magnetic monopole and found that the quantization of electric charge can be explained by postulating the mere existence of a magnetic monopole. Since 1974 there has been a resurgence of interest in magnetic monopole due to the work of ‘t’ Hooft and Polyakov who independently observed that monopoles can exist as finite energy topologically stable solutions to certain spontaneously broken gauge theories. The thesis, “Studies on Magnetic Monopole Solutions of Non-abelian Gauge Theories and Related Problems”, reports a systematic investigation of classical solutions of non-abelian gauge theories with special emphasis on magnetic monopoles and dyons which possess both electric and magnetic charges. The formation of bound states of a dyon with fermions and bosons is also studied in detail. The thesis opens with an account of a new derivation of a relationship between the magnetic charge of a dyon and the topology of the gauge fields associated with it. Although this formula has been reported earlier in the literature, the present method has two distinct advantages. In the first place, it does not depend either on the mechanism of symmetry breaking or on the nature of the residual symmetry group. Secondly, the results can be generalized to finite temperature monopoles.
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
Resumo:
Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.
Resumo:
In the last years many states in the charmonium mass region were discovery by BABAR, Belle and CDF collaborations I discuss some of these discoveries, and how the QCD Sum Rule approach can be used to understand the structure of these states
Resumo:
We extract directly (for the first time) the charmed (C = 1) and bottom (B = -1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exact value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa <(S) over bars >/<(d) over bard > of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi(c.b) and of the Omega(c). We obtain: kappa = 0.74(3), which improves the existing estimates: kappa = 0.70(10) from light hadrons. Using this value, we deduce M(Omega b) = 6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi(Q)` and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega(Q)* - Omega(Q) and Xi(Q)* - Xi(Q) are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b similar or equal to (-1/5-0) found from light and non-strange heavy baryons. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the thermodynamic properties and the phase diagrams of a multi-spin antiferromagnetic spherical spin-glass model using the replica method. It is a two-sublattice version of the ferromagnetic spherical p-spin glass model. We consider both the replica-symmetric and the one-step replica-symmetry-breaking solutions, the latter being the most general solution for this model. We find paramagnetic, spin-glass, antiferromagnetic and mixed or glassy antiferromagnetic phases. The phase transitions are always of second order in the thermodynamic sense, but the spin-glass order parameter may undergo a discontinuous change.
Resumo:
Lead calcium titanate (Pb(1-x)Ca(x)TiO(3) or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
We consider (for the first time) the ratios of doubly heavy baryon masses (spin 3/2 over spin 1/2 and SU(3) mass-splittings) using double ratios of sum rules (DRSR), which are more accurate than the usual simple ratios often used in the literature for getting the hadron masses. In general, our results agree and compete in precision with potential model predictions. In our approach, the alpha(s) corrections induced by the anomalous dimensions of the correlators are the main sources of the Xi(QQ)*-Xi(QQ) mass-splittings, which seem to indicate a 1/M(Q) behaviour and can only allow the electromagnetic decay Xi(QQ)* -> Xi(QQ) + gamma but not to Xi(QQ) + pi. Our results also show that the SU(3) mass-splittings are (almost) independent of the spin of the baryons and behave approximately like 1/M(Q), which could be understood from the QCD expressions of the corresponding two-point correlator. Our results can improved by including radiative corrections to the SU(3) breaking terms and can be tested, in the near future, at Tevatron and LHCb. (C) 2010 Published by Elsevier B.V.
Resumo:
A joint use of experimental and theoretical techniques allows us to understand the key role of intermediate- and short-range defects in the structural and electronic properties of ZnO single crystals obtained by means of both conventional hydrothermal and microwave-hydrothermal synthesis methods. X-ray diffraction, Raman spectra, photoluminescence, scanning electronic and transmission electron microscopies were used to characterize the thermal properties, crystalline and optical features of the obtained nano and microwires ZnO structures. In addition, these properties were further investigated by means of two periodic models, crystalline and disordered ZnO wurtzite structure, and first principles calculations based on density functional theory at the B3LYP level. The theoretical results indicate that the key factor controlling the electronic behavior can be associated with a symmetry breaking process, creating localized electronic levels above the valence band.
Resumo:
Lead calcium titanate (Pb1-xCaxTiO3 or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a. top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.
Resumo:
We derive constraints on a simple quintessential inflation model, based on a spontaneously broken Phi(4) theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation of state can evolve rapidly at recent times and hence can potentially be distinguished from a simple cosmological constant in this parameter regime.
Resumo:
We argue that the masses of the first and third fermionic generations, which are respectively of the order of a few MeV up to a hundred GeV, originate from a dynamical symmetry breaking mechanism leading to masses of the order alphamu, where alpha is a small coupling constant, and mu, in the case of the first fermionic generation, is the scale of the dynamical quark mass (approximate to250 MeV). For the third fermion generation mu is the value of the dynamical techniquark mass (approximate to250 GeV). We discuss how this possibility can be implemented in a technicolor scenario, and how the mass of the intermediate generation is generated.
Resumo:
Effect of bound nucleon internal structure change on nuclear structure functions is investigated based on local quark-hadron duality. The bound nucleon structure functions calculated for charged-lepton and (anti)neutrino scattering are all enhanced in symmetric nuclear matter at large Bjorken-x (x greater than or similar to 0.85) relative to those in a free nucleon. This implies that a part of the enhancement observed in the nuclear structure function F-2 (in the resonance region) at large Bjorken-x (the EMC effect) is due to the effect of the bound nucleon internal structure change. However, the x dependence for the charged-lepton and (anti)neutrino scattering is different. The former (latter) is enhanced (quenched) in the region 0.8 less than or similar to x less than or similar to 0.9 (0.7 less than or similar to x less than or similar to 0.85) due to the difference of the contribution from axial vector forrn factor. Because of these differences charge symmetry breaking in parton distributions will be enhanced in nuclei. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effective chiral Lagrangians involving constituent quarks, Goldstone bosons and long-distance gluons are believed to describe the strong interactions in an intermediate energy region between the confinement scale and the chiral symmetry breaking scale. Baryons and mesons in such a description are bound states of constituent quarks. We discuss the combined use of the techniques of effective chiral field theory and of the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between two nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of nuclear matter using this formalism.