899 resultados para SPONTANEOUS LOCOMOTOR-ACTIVITY
Resumo:
We conducted a longitudinal study about daily variation of Wistar male rats' behavior in the elevated plus-maze (EPM) evaluated in the 1st, 2nd, 3rd, 6th, 12th, and 18th months of life. Animals were submitted to the plus-maze in 12 sessions at 2-h intervals (n=72, 6 per time point). Spontaneous rest-activity rhythm of four animals was assessed by observation of 24-h videotape records. Time series were analyzed by Cosinor method. Behavioral rates on the six occasions and in light and dark phases were compared by means of two-way ANOVA with repeated measures. Exploratory behavior in EPM was smaller in the light phase and in older animals. Higher values of open and closed arms exploration were observed in the first and third months of the dark phase, and in the first month of the light phase. Adjustment to the 24-h period was significant at all stages for rest-activity data, number of entries in closed arms, and time on center, and for three to five stages for open-arm exploration. In general, 24 h variability was more pronounced in younger animals compared with older ones. The present study showed that: (1) a significant amount of total variability of the behavioral indexes analyzed could be attributed to 24 h variation, (2) light/dark phases differences in EPM exploration were present at all developmental stages, (3) older Wistar rats explored less the EPM and were less active in their home cage compared with younger ones, and (4) behavioral indexes (EPM) decrease was phase related and partially related to a reorganization of rest-activity rhythm. (C) 2003 Elsevier B.V. All rights reserved.
Differential behavioral and neuroendocrine effects of repeated nicotine in adolescent and adult rats
Resumo:
Despite the high prevalence of tobacco abuse among adolescents, the neurobiology of nicotine addiction has been studied mainly in adult animals. Repeated administration of this drug to adult rats induces behavioral sensitization. Nicotine activates the HPA axis in adult rats as measured by drug-induced increases in ACTH and corticosterone. Both behavioral sensitization and corticosterone are implicated in drug addiction. We examined the expression of behavioral sensitization induced by nicotine as well as the changes in corticosterone levels after repeated injections of nicotine in adolescent and adult animals. Adolescent and adult rats received subcutaneous (s.c.) injections of saline or 0.4 mg/kg of nicotine once daily for 7 days. Three days after the last injection animals were challenged with saline or nicotine (0.4 mg/kg; s.c.). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Adult, but not adolescent, rats expressed behavioral sensitization. Pretreatment with nicotine abolished corticosterone-activating effect of this drug only in adult animals, indicating the development of tolerance at this age. Our results provide evidence that adolescent rats exposed to repeated nicotine display behavioral and neuroendocrine adaptations distinct from that observed in adult animals. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Organisms are constantly subjected to stressful stimuli that affect numerous physiological processes and activate the hypothalamo-pituitary-adrenal (HPA) axis, increasing the release of glucocorticoids. Exposure to chronic stress is known to alter basic mechanisms of the stress response. The purpose of the present study was to compare the effect of two different stress paradigms (chronic restraint or variable stress) on behavioral and corticosterone release to a subsequent exposure to stressors. Considering that the HPA axis might respond differently when it is challenged with a novel or a familiar stressor we investigated the changes in the corticosterone levels following the exposure to two stressors: restraint (familiar stress) or forced novelty (novel stress). The changes in the behavioral response were evaluated by measuring the locomotor response to a novel environment. In addition, we examined changes in body, adrenals, and thymus weights in response to the chronic paradigms. Our results showed that exposure to chronic variable stress increased basal plasma corticosterone levels and that both, chronic restraint and variable stresses, promote higher corticosterone levels in response to a novel environment, but not to a challenge restraint stress, as compared to the control (non-stressed) group. Exposure to chronic restraint leads to increased novelty-induced locomotor activity. Furthermore, only the exposure to variable stress reduced body weights. In conclusion, the present results provide additional evidence on how chronic stress affects the organism physiology and point to the importance of the chronic paradigm and challenge stress on the behavioral and hormonal adaptations induced by chronic stress. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The positive profile of systemically-administered 5-HT(1A) receptor antagonists in several rodent models of anxiolytic activity suggests an important role for postsynaptic 5-HT(1A) receptor mechanisms in anxiety. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 0.1, 1.0 or 3.0 mug in 0.2 mul) into the dorsal (DH) or ventral (VH) hippocampus an behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As prior experience is known to modify pharmacological responses in this test, the effects of intra-hippocampal infusions were examined both in maze-naive and maze-experienced subjects. Test videotapes were scored for conventional indices of anxiety (% open arm entries/time) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-VH (but not intra-M) infusions of WAY-100635 (3.0 mug but not lower doses) increased open arm exploration and reduced risk assessment. These effects were observed in the absence of significant changes in locomotor activity. In contrast, neither intra-VH nor intra-DH infusions of WAY-100635 altered the behaviour of maze-experienced mice. These Findings suggest that postsynaptic 5-HT(1A) receptors in the ventral (but not dorsal) hippocampus play a significant role both in the mediation of plus-maze anxiety in mice and in experientially-induced alterations in responses to this test. (C) 2002 Elsevier B.V. BY All rights reserved.
Resumo:
Serotonin (5-HT) can either increase or decrease anxiety-like behaviour in animals, actions that depend upon neuroanatomical site of action and 5-HT receptor subtype. Although systemic studies with 5-HT(2) receptor agonists and antagonists suggest a facilitatory role for this receptor subtype in anxiety, somewhat inconsistent results have been obtained when such compounds have been directly applied to limbic targets such as the hippocampus and amygdala. The present study investigated the effects of the 5-HT(2B/2C) receptor agonist mCPP bilaterally microinjected into the dorsal hippocampus (DH: 0, 0.3 1.0 or 3.0 nmol/0.2 mu l), the ventral hippocampus (VH: 0, 0.3, 1.0 or 3.0 nmol/0.2 mu l) or the amygdaloid complex (0, 0.15, 0.5, 1.0 or 3.0 nmol/0.1 mu l) in mice exposed to the elevated plus-maze (EPM). Test sessions were videotaped and subsequently scored for conventional indices of anxiety (percentage of open arm entries and percentage of open arm time) and locomotor activity (closed arm entries). Results showed that mCPP microinfusions into the DH or VH failed to affect any behavioural measure in the EPM. However, when injected into the amygdaloid complex, the dose of 1.0 nmol of this 5HT(2B/2C) receptor agonist increased behavioural indices of anxiety without significantly altering general activity levels. This anxiogenic-like effect of mCPP was selectively and completely blocked by local injection of a behaviourally-inactive dose of SDZ SER-082 (10 nmol/0.1 mu l), a preferential 5-HT(2C) receptor antagonist. These data suggest that 5HT(2C) receptors located within the amygdaloid complex (but not the dorsal or ventral hippocampus) play a facilitatory role in plus-maze anxiety in mice. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Studies in several laboratories have confirmed the anxiolytic potential of a wide range of 5-HT1A receptor antagonists in rats and mice, with recent evidence pointing to a postsynaptic site of action in the ventral hippocampus. It would, therefore, be predicted that blockade of 5-HT1A somatodendritic autoreceptors in the midbrain raphe nuclei should produce anxiogenic-like effects. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 1.0 or 3.0 mug in 0.1 mul) into the dorsal (DRN) or median (MRN) raphe nuclei on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As this test is sensitive to prior experience. The effects of intra-raphe infusions were examined both in maze-naive and maze-experienced subjects. Sessions, were videotaped and subsequently scored for conventional indices of anxiety (open arm avoidance) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-MRN (but not intra-DRN) infusions of WAY-100635 (3.0 mug) increased open arm exploration and reduced risk assessment. Importantly, these effects could not be attributed to a general reduction in locomotor activity. A similar, though somewhat weaker, pattern of behavioural change was observed in maze-experienced animals. This unexpected anxiolytic effect of 5-HT1A autoreceptor blockade in the MRN cannot be accounted fur by a disinhibition of 5-HT release in forebrain targets (e.g. hippocampus and amygdala), where stimulation of postsynaptic 5-HT1A receptors enhances anxiety-like responses. However, as the MRN also projects to the periaqueductal gray matter (PAG), an area known to be sensitive to the anti-aversive effects or 5-HT, it is argued that present results may reflect increased 5-HT release at this crucial midbrain locus within the neural circuitry of defense. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
It is widely acknowledged that the indoleamine neurotransmitter serotonin (5-HT) plays a dual role in the regulation of anxiety, a role that in part depends upon neuroanatomical locus of action. Thus, whereas stimulation of 5-HT1A or 5-HT2 receptors in the limbic forebrain (amygdala, hippocampus) enhances anxiety-like responding in rodents, activation of corresponding receptor populations in the midbrain periaqueductal grey (PAG) more often than not reduce anxiety-like behaviour. The present study specifically concerns the anxiety-modulating influence of 5-HT2 receptors within the mouse PAG. Experiment 1 assessed the effects of intra-PAG infusions of the 5-HT2B/2C receptor agonist mCPP (0, 0.03, 0.1 or 0.3 nmol/0.1 mu l) on the behaviour of mice exposed to the elevated plus-maze. As mCPP acts preferentially at 5-HT2B and 5-HT2C receptors, Experiment 2 investigated its effects in animals pretreated with ketanserin, a preferential 5-HT2A/2C receptor antagonist. In both cases, test sessions were videotaped and subsequently, scored for anxiety-like behaviour (e.g., percentage of open arm entries and percentage of open arm time) as well as general locomotor activity (closed arm entries). The results of Experiment I showed that mCPP microinfusions (0.03 and 0.1 nmol) into the PAG of mice decreased behavioural indices of anxiety without significantly altering general activity measures. In Experiment 2, the anxiolytic-like profile of intra-PAG mCPP (0.03 nmol) was substantially attenuated by intra-PAG pretreatment with an intrinsically inactive dose of the preferential 5-HT2A/2C receptor antagonist, ketanserin (10 nmol/0.1 mu l). Together, these data suggest that 5HT(2C) receptor populations within the midbrain PAG play an inhibitory role in plus-maze anxiety in mice. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cocaine-induced behavioral sensitization and weight loss were investigated in periadolescent Wistar rats kept with their mothers or subjected to repeated maternal separation. Litters allocated to the separation procedure were placed in a temperature-controlled (33ºC) chamber for 3 h per day from postnatal day 6 (P6) to P20. Non-handled rats were left undisturbed until weaning. Treatments were started on P30-31 and the test was performed on P36-37. Animals received injections of saline or cocaine (10 mg/kg, sc) twice daily for 5 days. on day 6 all animals received saline. on day 7 animals were challenged with 10 mg/kg cocaine and their locomotion was evaluated in activity cages. A third group received saline throughout the 7-day period. Body weights were recorded on P30-31 and P36-37. Two-way ANOVA on body weights showed a main effect of treatment group (F(1,35) = 10.446, P = 0.003; N = 10-12). Non-handled rats treated with cocaine for 5 days gained significantly less weight, while no significant effect was observed in maternally separated rats. Two-way ANOVA revealed a main effect of drug treatment on locomotor activity (F(2,32) = 15.209, P<0.001; N = 6-8), but not on rearing condition (F(1,32)<0.001, P = 0.998). Animals pretreated with cocaine showed a clear behavioral sensitization relative to the saline group. No difference in the magnitude of sensitization was found between separated and non-handled animals. Only the effect of cocaine on weight gain was significantly affected by repeated episodes of early maternal separation during the pre-weaning period.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)