958 resultados para SPATIO-TEMPORAL DISTRIBUTION
Resumo:
We assess the strength of association between aerosol optical depth (AOD) retrievals from the GOES Aerosol/Smoke Product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United States. GASP AOD is retrieved from a geostationary platform and therefore provides dense temporal coverage with half-hourly observations every day, in contrast to once per day snapshots from polar-orbiting satellites. However, GASP AOD is based on a less-sophisticated instrument and retrieval algorithm. We find that correlations between GASP AOD and PM2.5 over time at fixed locations are reasonably high, except in the winter and in the western U.S. Correlations over space at fixed times are lower. Simple averaging over time actually reduces correlations over space dramatically, but statistical calibration allows averaging over time that produces strong correlations. These results and the data density of GASP AOD highlight its potential to help improve exposure estimates for epidemiological analyses. On average 40% of days in a month have a GASP AOD retrieval compared to 14% for MODIS and 4% for MISR. Furthermore, GASP AOD has been retrieved since November 1994, providing the possibility of a long-term record that pre-dates the availability of most PM2.5 monitoring data and other satellite instruments.
Resumo:
Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately
Resumo:
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.
Resumo:
The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility.
Resumo:
Rho-family GTPases are molecular switches that transmit extracellular cues to intracellular signaling pathways. Their regulation is likely to be highly regulated in space and in time, but most of what is known about Rho-family GTPase signaling has been derived from techniques that do not resolve these dimensions. New imaging technologies now allow the visualization of Rho GTPase signaling with high spatio-temporal resolution. This has led to insights that significantly extend classic models and call for a novel conceptual framework. These approaches clearly show three things. First, Rho GTPase signaling dynamics occur on micrometer length scales and subminute timescales. Second, multiple subcellular pools of one given Rho GTPase can operate simultaneously in time and space to regulate a wide variety of morphogenetic events (e.g. leading-edge membrane protrusion, tail retraction, membrane ruffling). These different Rho GTPase subcellular pools might be described as 'spatio-temporal signaling modules' and might involve the specific interaction of one GTPase with different guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and effectors. Third, complex spatio-temporal signaling programs that involve precise crosstalk between multiple Rho GTPase signaling modules regulate specific morphogenetic events. The next challenge is to decipher the molecular circuitry underlying this complex spatio-temporal modularity to produce integrated models of Rho GTPase signaling.