985 resultados para SIGNALING COMPLEX


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial (VE)-cadherin is an essential protein of adherens junctions of endothelial cells and plays a pivotal role in vascular homeostasis. Mammalian target of rapamycin complex 2 (mTORC2) deficient mice display defects in fetal vascular development. Blocking mTOR or the upstream kinase phosphoinositide 3-kinase (PI3K) led to a dose-dependently decrease of the VE-cadherin mRNA and protein expression. Immunofluorescent staining showed a strongly decreased expression of VE-cadherin at the interface of human umbilical endothelial cells (HUVECs) followed by intercellular gap formation. Herewith, we demonstrated that the expression of VE-cadherin is dependent on mTOR and PI3K signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transitory binding between photoactivated rhodopsin (Rho* or Meta II) and the G protein transducin (Gt-GDP) is the first step in the visual signaling cascade. Light causes photoisomerization of the 11-cis-retinylidene chromophore in rhodopsin (Rho) to all-trans-retinylidene, which induces conformational changes that allow Gt-GDP to dock onto the Rho* surface. GDP then dissociates from Gt, leaving a transient nucleotide-empty Rho*-Gt(e) complex before GTP becomes bound, and Gt-GTP then dissociates from Rho*. Further biochemical advances are required before structural studies of the various Rho*-Gt complexes can be initiated. Here, we describe the isolation of n-dodecyl-beta-maltoside solubilized, stable, functionally active, Rho*-Gt(e), Rho(e)*-Gt(e), and 9-cis-retinal/11-cis-retinal regenerated Rho-Gt(e) complexes by sucrose gradient centrifugation. In these complexes, Rho* spectrally remained in its Meta II state, and Gt(e) retained its ability to interact with GTPgammaS. Removal of all-trans-retinylidene from Rho*-Gt(e) had no effect on the stability of the Rho(e)*-Gt(e) complex. Moreover, opsin in the Rho(e)*-Gt(e) complex with an empty nucleotide-binding pocket in Gt and an empty retinoid-binding pocket in Rho was regenerated up to 75% without complex dissociation. These results indicate that once Rho* couples with Gt, the chromophore plays a minor role in stabilizing this complex. Moreover, in complexes regenerated with 9-cis-retinal/11-cis-retinal, Rho retains a conformation similar to Rho* that is stabilized by Gt(e) apo-protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eph receptors and their membrane-bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell-adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand-mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1-dependent Rac1 activation and ephrinA1-induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apicomplexan parasites Theileria annulata and T. parva possess the ability to transform the infected host cell and induce uncontrolled proliferation. Residing free in the cytosol of its host leukocyte, the schizont is in a perfect position to manipulate host cell signaling pathways involved in regulating apoptosis, proliferation, and cell motility. While extensive Theileria-induced changes in host cell protein phosphorylation patterns have been reported, no Theileria-encoded kinases or phosphatases have been demonstrated - or are even predicted - to be associated with the schizont surface or secreted into the host cell. Instead, it seems that Theileria has evolved the capacity to modulate kinases of the host cell. In certain cases this involves “hijacking” pivotal kinases, such as the IκB kinase complex or the mitotic kinase polo-like kinase 1, recruiting them to the schizont surface. In this chapter the current understanding of Theileria-induced changes in host cell kinase activation is reviewed, and an attempt is made to link these events to phenotypic changes that occur in the cell in response to Theileria infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca(2+) release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca(2+)-induced Ca(2+) release mechanism and contribute a large fraction of the Ca(2+) required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca(2+) sensitivity. Presently, research in a number of laboratories is focused on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS/RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pK(a) of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by approximately 1.5 units from that of the inwardly connected conformer. The pK(a) difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the one-photon excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connected retinylidene Schiff base like the repellent signaling forms of the SRI-HtrI complex, indicating the general applicability of macro conformational changes, which can be detected by the connectivity switch, to phototaxis signaling by sensory rhodopsin-transducer complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a genetic disorder with pleiotropic manifestations caused by heterozygous mutations in either TSC1 or TSC2. One of the less investigated complications of TSC is the formation of aneurysms of the descending aorta, which are characterized on pathologic examination by smooth muscle cell (SMC) proliferation in the aortic media. SMCs were explanted from Tsc2(+/-) mice to investigate the pathogenesis of aortic aneurysms caused by TSC2 mutations. Tsc2(+/-) SMCs demonstrated increased phosphorylation of mammalian target of rapamycin (mTOR), S6 and p70S6K and increased proliferation rates compared with wild-type (WT) SMCs. Tsc2(+/-) SMCs also had reduced expression of SMC contractile proteins compared with WT SMCs. An inhibitor of mTOR signaling, rapamycin, decreased SMC proliferation and increased contractile protein expression in the Tsc2(+/-) SMCs to levels similar to WT SMCs. Exposure to alpha-elastin fragments also decreased proliferation of Tsc2(+/-) SMCs and increased levels of p27(kip1), but failed to increase expression of contractile proteins. In response to artery injury using a carotid artery ligation model, Tsc2(+/-) mice significantly increased neointima formation compared with the control mice, and the neointima formation was inhibited by treatment with rapamycin. These results demonstrate that Tsc2 haploinsufficiency in SMCs increases proliferation and decreases contractile protein expression and suggest that the increased proliferative potential of the mutant cells may be suppressed in vivo by interaction with elastin. These findings provide insights into the molecular pathogenesis of aortic disease in TSC patients and identify a potential therapeutic target for treatment of this complication of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Halobacterium salinarum phototaxis is mediated by the visual pigment-like photoreceptors sensory rhodopsin I (SRI) and II (SRII). SRI is a receptor for attractant orange and repellent UV-blue light, and SRII is a receptor for repellent blue-green light, and transmit signals through the membrane-bound transducer proteins HtrI and HtrII, respectively. ^ The primary sequences of HtrI and HtrII predict 2 transmembrane helices (TM1 and TM2) followed by a hydrophilic cytoplasmic domain. HtrII shows an additional large periplasmic domain for chemotactic ligand binding. The cytoplasmic regions are homologous to the adaptation and signaling domains of eubacterial chemotaxis receptors and, like their eubacterial homologs, modulate the transfer of phosphate groups from the histidine protein kinase CheA to the response regulator CheY that in turn controls flagellar motor rotation and the cell's swimming behavior. HtrII and Htrl are dimeric proteins which were predicted to contain carboxylmethylation sites in a 4-helix bundle in their cytoplasmic regions, like eubacterial chemotaxis receptors. ^ The phototaxis transducers of H. salinarum have provided a model for studying receptor/tranducer interaction, adaptation in sensory systems, and the role of membrane molecular complexes in signal transduction. ^ Interaction between the transducer HtrI and the photoreceptor SRI was explored by creating six deletion constructs of HtrI, with progressively shorter cytoplasmic domains. This study confirmed a putative chaperone-like function of HtrI, facilitating membrane insertion or stability of the SRI protein, a phenomenon previously observed in the laboratory, and identified the smallest HtrI fragment containing interaction sites for both the chaperone-like function and SRI photocycle control. The active fragment consisted of the N-terminal 147 residues of the 536-residue HtrI protein, a portion of the molecule predicted to contain the two transmembrane helices and the first ∼20% of the cytoplasmic portion of the protein. ^ Phototaxis and chemotaxis sensory systems adapt to stimuli, thereby signaling only in response to changes in environmental conditions. Observations made in our and in other laboratories and homologies between the halobacterial transducers with the chemoreceptors of enteric bacteria anticipated a role for methylation in adaptation to chemo- and photostimuli. By site directed mutagenesis we identified the methylation sites to be the glutamate pairs E265–E266 in HtrI and E513–E514 in HtrII. Cells containing the unmethylatable transducers are still able to perform phototaxis and adapt to light stimuli. By pulse-chase analysis we found that methanol production from carboxylmethyl group hydrolysis occurs upon specific photo stimulation of unmethylatable HtrI and HtrII and is due to turnover of methyl groups on other transducers. We demonstrated that the turnover in wild-type H. salinarum cells that follows a positive stimulus is CheY-dependent. The CheY-feedback pathway does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell. ^ Assembly of signaling molecules into architecturally defined complexes is considered essential in transmission of the signals. The spectroscopic characteristics of SRI were exploited to study the stoichiometric composition in the phototaxis complex SRI-HtrI. A molar ratio of 2.1 HtrI: 1 SRI was obtained, suggesting that only 1 SRI binding site is occupied on the HtrI homodimer. We used gold-immunoelectron microscopy and light fluorescence microscopy to investigate the structural organization and the distribution of other halobacterial transducers. We detected clusters of transducers, usually near the cell's poles, providing a ultrastructural basis for the global effects and intertransducer communication we observe. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drugs that inhibit insulin-like growth factor 1 (IGFI) receptor IGFIR were encouraging in early trials, but predictive biomarkers were lacking and the drugs provided insufficient benefit in unselected patients. In this study, we used genetic screening and downstream validation to identify the WNT pathway element DVL3 as a mediator of resistance to IGFIR inhibition. Sensitivity to IGFIR inhibition was enhanced specifically in vitro and in vivo by genetic or pharmacologic blockade of DVL3. In breast and prostate cancer cells, sensitization tracked with enhanced MEK-ERK activation and relied upon MEK activity and DVL3 expression. Mechanistic investigations showed that DVL3 is present in an adaptor complex that links IGFIR to RAS, which includes Shc, growth factor receptor-bound-2 (Grb2), son-of-sevenless (SOS), and the tumor suppressor DAB2. Dual DVL and DAB2 blockade synergized in activating ERKs and sensitizing cells to IGFIR inhibition, suggesting a nonredundant role for DVL3 in the Shc-Grb2-SOS complex. Clinically, tumors that responded to IGFIR inhibition contained relatively lower levels of DVL3 protein than resistant tumors, and DVL3 levels in tumors correlated inversely with progression-free survival in patients treated with IGFIR antibodies. Because IGFIR does not contain activating mutations analogous to EGFR variants associated with response to EGFR inhibitors, we suggest that IGF signaling achieves an equivalent integration at the postreceptor level through adaptor protein complexes, influencing cellular dependence on the IGF axis and identifying a patient population with potential to benefit from IGFIR inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rho-family GTPases are molecular switches that transmit extracellular cues to intracellular signaling pathways. Their regulation is likely to be highly regulated in space and in time, but most of what is known about Rho-family GTPase signaling has been derived from techniques that do not resolve these dimensions. New imaging technologies now allow the visualization of Rho GTPase signaling with high spatio-temporal resolution. This has led to insights that significantly extend classic models and call for a novel conceptual framework. These approaches clearly show three things. First, Rho GTPase signaling dynamics occur on micrometer length scales and subminute timescales. Second, multiple subcellular pools of one given Rho GTPase can operate simultaneously in time and space to regulate a wide variety of morphogenetic events (e.g. leading-edge membrane protrusion, tail retraction, membrane ruffling). These different Rho GTPase subcellular pools might be described as 'spatio-temporal signaling modules' and might involve the specific interaction of one GTPase with different guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and effectors. Third, complex spatio-temporal signaling programs that involve precise crosstalk between multiple Rho GTPase signaling modules regulate specific morphogenetic events. The next challenge is to decipher the molecular circuitry underlying this complex spatio-temporal modularity to produce integrated models of Rho GTPase signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinase (PI3K) generates membrane phospholipids that serve as second messengers to recruit signaling proteins to plasma membrane consequently regulating cell growth and survival. PI3K is a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit. Association of the p85 with other signal proteins is critical for induced PI3K activation. Activated PI3K, in turn, leads to signal flows through a variety of PI3K effectors including PDK1, AKT, GSK3, BAD, p70 S6K and NFκB. The PI3K pathway is under regulation by multiple signal proteins representing cross-talk between different signaling cascades. In this study, we have evaluated the role of protein kinase C family kinases on signaling through PI3K at multiple levels. Firstly, we observed that the action of PKC specific inhibitors like Ro-31-8220 and GF109203X was associated with an increased AKT phosphorylation and activity, suggesting that PKC kinases might play a negative role in the regulation of PI3K pathway. Then, we demonstrated the stimulation of AKT by PKC inhibition was dependent on functional PI3K enzyme and able to be transmitted to the AKT effector p70 S6K. Furthermore, we showed an inducible physical association between the PKCζ isotype and AKT, which was accompanied by an attenuated AKT activity. However, a kinase-dead form of PKC failed to affect AKT. In the second part of our research we revealed the ability of a different PKC family member, PKCδ to bind to the p85 subunit of PI3K in response to oxidative stress, a process requiring the activity of src tyrosine kinases. The interaction was demonstrated to be a direct and specific contact between the carboxyl terminal SH2 domain of p85 and tyrosine phosphorylated PKCδ. Several different types of agonists were capable to induce this association including tyrosine kinases and phorbol esters with PKCδ tyrosine phosphorylation being integral components. Finally, the PKCδ-PI3K complex was related to a reduction in the AKT phosphorylation induced by src. A kinase-deficient mutant of PKCδ was equally able to inhibit AKT signal as the wild type, indicative of a process independent of PKCδ catalytic activity. Altogether, our data illustrate different PKC isoforms regulating PI3K pathway at multiple levels, suggesting a mechanism to control signal flows through PI3K for normal cell activities. Although further investigation is required for full understanding of the regulatory mechanism, we propose that complex formation of signal proteins in PI3K pathway and specific PKC isoforms plays important role in their functional linkage. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of the vertebrate face is an extremely complex developmental process, which needs to coordinate the outgrowth of several facial primordia. Facial primordia are small buds made up of mesenchymal masses enclosed by an epithelial layer that surrounds the primitive mouth. The upper jaw is formed by the maxillary process, the lateral nasal process, and the frontonasal process while the mandibular process forms the lower jaw. Recent experiments using genetics in mice and bead implantation approaches have shown that the pitx2 homeobox gene and Bmp signaling play important roles in this complex developmental process. However, the molecular mechanisms underlying the function of pitx2 and Bmp in these events are still unclear. Here, we show that pitx2 is required for oral epithelium maintenance, and branchial arch signaling is pitx2 dosage sensitive by using pitx2 allelic combinations that encode varying levels of pitx2. Maintenance of fgf8 signaling requires only low pitx2 dosage while repression of Bmp signaling requires high pitx2 levels. Different incisor and molar phenotypes in low level pitx2 mutant embryos suggest a distinct requirement for pitx2 in tooth-type development. The results show that pitx2 is required for craniofacial muscle formation and expanded Bmp signaling results in excess bone formation in pitx2 mutant embryos. Fate-mapping studies show that ectopic bone results from excessive bone growth, instead of muscle transformation. Moreover, by using cre/loxp system we show that partial loss of Bmpr-IA in the facial primordia results in cleft lip/palate, abnormal teeth, ectopic teeth and tooth transformation. These phenotypes suggest that Bmp signaling has multiple functions during craniofacial development. The mutant palate shelves can fuse with each other when cultured in vitro, suggesting that cleft palate is secondary to the partial loss of Bmpr-IA. Furthermore, we prove that Bmp4, one of the ligands of Bmpr-IA, plays a role during lip fusion developmental process and partial loss of Bmp4 in the facial primordia results in the lip fusion delay. These results have provided insight to understand the complex signaling cascades that regulate craniofacial development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RC3, also known as neurogranin, is a small neuronal IQ domain protein whose only known function is to bind calmodulin (CaM). The hypothesis tested in this work was that RC3 alters the dynamics of the interaction of Ca 2+-CaM with CaM-kinase II, so that there is less CaM-kinase II activation for a given Ca2+ stimulus. To evaluate this hypothesis, we investigated the affinity and kinetics of the interactions of CaM with Ca 2+, RC3 and CaM-kinase II. We quantitated the interaction of the four CaM-kinase II isoforms with CaM and found that the KD for binding of CaM to CaM-kinase II ranged from 7 nM to 60 nM. Using stopped-flow fluorimetry, we determined the kinetics of the interaction of Ca2+-CaM with αCaM-kinase II, and found that the association rate constant is 2.1 × 10 M −1s−1 and the dissociation rate constant is 1.6 s−1. We investigated the effects of RC3 and αCaM-kinase II on the affinity of CaM for Ca2+ and found that both proteins alter the rate of dissociation of Ca2+ from CaM. RC3 increases the rate of dissociation of Ca2+ from the C-terminal binding sites of CaM from 9 s−1 to ∼500 s−1 , while αCaM-kinase II causes a decrease in the rate of dissociation from all four Ca2+ binding sites. Measurement of the rate of dissociation of Ca2+ from CaM in the presence of both RC3 and αCaM-kinase II revealed a role for RC3 in accelerating the dissociation of the Ca 2+-CaM-αCaM-kinase II complex at the end of a Ca2+ signal. We characterized the interaction of RC3 with apo-CaM and Ca 2+-CaM and found that the KD for both of these interactions is about 1 μM. We also directly tested whether RC3 slowed the dynamics of the binding of CaM to αCaM-kinase II and found that RC3 had no effect for large changes in Ca2+, and a modest effect for small changes in Ca2+ levels. Our overall conclusion is that the ability of RC3 to alter the interaction of Ca2+ with CaM allows RC3 to alter the dynamics of interaction of CaM with Ca2+-dependent targets such as CaM-kinase II. ^