903 resultados para SIG-GRASS
Resumo:
In this study microbiological , chemical quality and fatty acid composition of grass carp (Ctenopharyngodon idella) fillets treated by dipping in sodium acetate (%1 and %3), nisin (% 0.1 and % 0.2) and combination of sodium acetate and nisin was evaluated during 16 days of refrigerated of 4°C Antilisterial effect of nisin was enhanced with the increased concentration of sodium acetate. At day 12 post storage, Listeria monocytogenese count was higher in the control group than the recommended value, however in sodium acetate and nisin treated samples, the count was lower (5.17-5.91 log cfu/g). With increasing the concentrations of sodium acetate, mesophilic counts were lower. Regarding nisin, better results was obtained by applying %0.1 nisin. Greater inhibition of mesophile bacteria was observed when combination treatment was used. The number of lactobacillus was lower when higher concentrations of sodium acetate and nisin were used. Total Volatile Nitrogen values at the end of the experiment were lower in the samples treated with both nisin and sodium acetate and the better results were obtained in combination treatments. Peroxide (PV) at the end of the experiment was 1.9 meq/kg in control, and the lowest values were observed for the treatments 3(%0 sodium acetate +% 0.2 nisin) and 9(%3 sodium acetate +% 0.2 nisin) between 1.08 and 1.62 meq/kg without significant difference. Thiobarbituric acid (TBA) levels at the end of experiment have been shown to be 0.46 mg malonaldehyde per kg in the control. On the other hand treatments 9 had the TBA values of 0.19 mg malonaldehyde per kg which was significantly lower than that of control. Polyunsaturated fatty acids increased by increasing the sodium acetate doses and instead saturated fatty acids and n-6/n-3 ratio decreased. The ratio of UFA/SFA and also C22:6/C16:0 increased when a higher concentration of sodium acetate has been used. The best result obtained by using 3% of sodium acetate but no such relation with nisin was observed.
Resumo:
Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. To investigate grass carp immune system responding to GCRV (grass carp reovirus) infection, the full-length cDNA sequence and genomic organization of grass carp TLR3 (CiTLR3) was identified and characterized. The full-length genome sequence of CiTLR3 is composed of 5668 nucleotides, including five exons and four introns. The full-length of CiTLR3 cDNA is 3681 bp in length and encodes a polypeptide of 904 amino acids with an estimated molecular mass of 102,765 Da and a predicted isoelectric point of 8.35. Analysis of the deduced amino acid sequence indicated that CiTLR3 has four main structural domains, including a signal peptide sequence, 14 LRR (leucine-rich repeat) motifs, a transmembrane region and a TIR (Toll/interleukin-1 receptor) domain. It is most similar to the crucian carp (Carassius auratus) TLR3 amino acid sequence with an identity of 99%. Quantitative RT-PCR analysis showed that CiTLR3 transcripts were significantly up-regulated starting at day 1 and continued through day 7 following GCRV infection (P < 0.05). These data implied that CiTLR3 is involved in antiviral defense, provide molecular and functional information for grass carp TLR3, and implicate their role in mediating immune protection against grass carp viral diseases. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The effects of beta-glucan, an immunostimulatory agent, on the superoxide dismutase (SOD) and catalase (CAT) activities of erythrocytes and Mx gene expression were studied from grass carp that were challenged with grass carp hemorrhage virus (GCHV). The SOD and CAT activities in erythrocytes and Mx gene expression in spleen from the fish were detected by spectrophotometry and RT-PCR, respectively. Negative control fish were injected with PBS; positive control groups were injected with either P-glucan or GCHV only; and the experimental groups were pre-injected with beta-glucan 15 days prior to injection with GCHV. The results show that the SOD and CAT activities were higher in fish injected with beta-glucan for 15 days than the negative control group injected with PBS. The SOD and CATactivities significantly decreased when the fish were challenged with GCHV, but it was higher in the group pre-treated with beta-glucan than in infected fish not pre-treated, 15 days after GCHV infection. Mx gene expression levels increased during the early stages (at 12 h and 36 h) of GCHV infection, and it remained at higher levels from the 6th till the 10th day in the beta-glucan pre-treated group, but it was failing from the 6th day in the beta-glucan untreated group. The GCHV-infected group pre-treated with P-glucan had a higher survival rate (60%) than the group not pre-treated with P-glucan (20%), suggesting that beta-glucan possesses or enhances anti-viral responses. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518 Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll - interleukin 1 - receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies in mammals have revealed that the cyanobacterial toxin MC-LR suppresses immune functions. Nevertheless, immunotoxic effects of microcystins have been little studied in fish. In this paper, we present the profiles of the immune modulation of MC-LR in grass carp, and quantitative real-time PCR methodology was developed for the measurement of relative transcription changes of six immune-related genes in the spleen and head kidney of the grass carp Ctenopharyngodon idella, which were intraperitoneally injected with 50 mu g MC-LR center dot kg(-1) body weight in a three-week period. This study was focused exclusively on gene transcription level changes at different time points after MC-LR exposure, so, only one dose was given. The investigated genes were interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), type I interferon (Type I IFN), peptidoglycan recognition protein-L (PGRP-L), immunoglobulin M (IgM) and major histocompatibility complex class I (MHC-I) genes. The results demonstrated that the transcription levels of the TNF-alpha, type I IFN, and PGRP-L genes in the spleen and head kidney were significantly low at all time points, and those of IL-1 beta were significantly low in the head kidney at different time points. In addition, IgM and MHC-I transcription levels were only significantly low in the spleen and head kidney at 21 d postinjection. The changes in the transcription levels of immune-related genes induced by MC-LR confirmed its effect on inhibiting immune function at the transcription level.
Resumo:
In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd.
Resumo:
Dicer catalyzes the initiation step of RNA interference (RNAi) which is known to play a significant role in innate immune response to viral infection in many organisms. To study the RNAi-related pathway after virus infection in fish, we identified a partial cDNA sequence of dicer from rare minnow, Gobiocypris rants. Real-time quantitative RT-PCR (qRT-PCR) demonstrated the Dicer transcript level was the highest at zygote stage, decreased at prim-5 stage, and was stable from the protruding mouth to adult stage. Regular RT-PCR analysis showed that the Dicer gene expressed widely in the tested tissues, including brain, gill, heart, intestine, kidney, liver, muscle, ovary, spleen and testis. The expression of Dicer mRNA was significantly increased in the early period of Grass carp reovirus (GCRV) infection, and declined from 24 It post-injection (h p.i.) (P<0.05). The mRNA expression returned to control levels at 48 h p.i. (P>0.05). Under transmission electron microscope, virions were difficulty to find out in 12 h p.i., and virus inclusion bodies and few scattered viral particles were easily visualized from 24 h p.i. to moribund. These results implied GCRV triggered the RNAi pathway in the early stages of infection and perhaps virus inclusion bodies suppressed the antiviral functions of RNAi mechanism. (C) 2009 Published by Elsevier B.V.
Resumo:
Relatively little is known in relation to pathological changes of immune organs in fish when exposed to MC-LR. The ultrastructural alteration of lymphocytes was examined in the spleen and pronephros of grass carp Ctenopharyngodon idella injected experimentally with microcystin-LR. The fish were intraperitoneally injected with MC-LR at a dose of 50 mu g/kg body weight, and the spleen and pronephros were dissected out at 1, 2, 7, 14 and 21 days post intraperitoneal injection (dpi). Pathological changes were then examined by transmission electron microscopy. Apoptosis was detected only in lymphocytes in the spleen, with obvious apoptotic features observed at 2 dpi; pathological changes of lymphocytes in the pronephros were also serious with mitochondria being highly edematous. However, damaged lymphocytes were almost un-observed in the spleen and pronephros at 21 dpi. These findings suggest that MC-LR can induce toxic effect on immune organs in grass carp, and the spleen may be much more sensitive to MC-LR stimulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study determined whether cutaneous antibodies were present in excised skin explants of grass carp, Ctenopharyngodon idella, immune to Scophthalmus maximus rhabdovirus (SMRV). Culture fluid from immune skin explants were assayed by indirect enzyme-linked immunosorbent assay (iELISA), Western blot, indirect immunofluorescent assay (IFA) and flow cytometry (FCM). iELISA showed that cutaneous antibody titres were much lower (1:12) than antiserum titres (1:1458) from intraperitoneally immunized grass carp. The phosphoprotein and matrix protein antigens of purified SMRV proteins were recognized by cutaneous antibodies from skin culture fluid using Western blot. The skin culture fluid produced staining signals in viral assembly sites and cytoplasm of SMRV-infected epithelioma papulosum cyprini (EPC) cells by IFA. FCM showed that 4.39% SMRV-infected EPC cells were detected, while non-specific reaction was seen in 2% of control cells. This is the first description of cutaneous antibodies against SMRV in grass carp.
Resumo:
SIMP (source of immunodominant MHC-associated peptides) plays a key rote in N-linked glycosylation with the active site of oligosaccharyltransferase, being the source of MHC-peptides in the MHC I presentation pathway. In the present study, the SIMP gene has been cloned from grass carp Ctenopharyngodon idella by rapid amplification of cDNA ends (RACE). The full length of the cDNA sequence is 4384 bp, including a 1117 bp 5' UTR (untranslated region), a 2418 bp open reading frame, and a 849 bp 3' UTR. The deduced amino acids of the grass carp SIMP (gcSIMP) are a highly conserved protein with a STT3 domain and 11 transmembrane regions. The gcSIMP spans over more than 24,212 bp in length, containing 16 exons and 15 introns. Most encoding exons, except the first and the 15th, have the same length as those in human and mouse. The gcSIMP promoter contains many putative transcription factor binding sites, such as Oct-1, GCN4, YY1, Sp1, Palpha, TBP, GATA-1, C/EBP beta, and five C/EBP alpha binding sites. The mRNA expression of gcSIMP in different organs was examined by real-time PCR. The gcSIMP was distributed in all the organs examined, with the highest level in brain, followed by the level in the heart, liver, gill, trunk kidney, muscle, head kidney, thymus, and the lowest level in spleen. Furthermore, the recombinant gcSIMP has been constructed successfully and expressed in Escherichia coli by using pQE-40 vector, and the polyclonal antibody for rabbit has been successfully obtained, which was verified to be specific. Identification of gcSIMP will help to explore the function in fish innate immunity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
TNF receptor associated factor 1 (TRAF1) plays an important role in regulating the TNF signaling and protecting cells from apoptosis. In the present study, a TRAF1 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA is 2235 bp, including a 250 bp 5' UTR (untranslated region), a 1659 bp open reading frame, and a 326 bp 3'UTR. The polyadenylation signal (AATAAA, AATAA) and one mRNA instability motif (AUUUA) were found followed by a poly (A) tail in the 3'UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF1 (gcTRAF1). The putative amino acids of gcTRAF1 share 72% identity with the homologue in zebrafish. It is characterized by a zinc finger at the N-terminus and a TRAF domain (contains one TRAF-C and one TRAF-N) at the C-terminus. The identity of the TRAF domain among all the TRAF1 homologues in vertebrates varies from 52% to 58%, while the identities of TRAF-C were almost the same as 70%. The recombinant gcTRAF1 has been constructed successfully and expressed in Escherichia coli by using pET-32a expression vector. The polyclonal antibody for rabbit has been successfully obtained. The expression of gcTRAF1 in different organs was examined by real-time quantitative PCR and Western blotting, respectively. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of TRAF1 homologue molecule found in fish. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a crucial component of almost the entire tumor necrosis factor receptor superfamily signaling pathway. In the present study, a TRAF2 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The full-length cDNA is 3162 bp, including a 60 bp 5' untranslated region (UTR), a 1611 bp open reading frame, and a 1491 bp 3' UTR. The polyadenylation signal (AATAAA) and the mRNA instability motifs (ATTTTA, ATTTA) were followed by a poly(A) tail in the 3' UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF2 (gcTRAF2). Phylogenetic tree analysis clearly showed that gcTRAF2 is nearest to the TRAF2 gene of goldfish. The identity of gcTRAF2 with its homologs in other vertebrates ranges from 56% to 97%. It is characterized by one RING-type signature at the N-terminus, one zinc finger in the middle part, and one conserved TRAF domain consisting of a C-proximal (TRAF-C) subdomain and a N-proximal (TRAF-N) subdomain. The identity of TRAF-C among all TRAF2 homologs in vertebrates varies from 78% to 97%, whereas the identity of TRAF-N ranges from 56% to 100%. The recombinant gcTRAF2 has been expressed in Escherichia coli using pET-32a expression vector. The rabbit anti-gcTRAF2 polyclonal antibody was obtained. The expression of gcTRAF2 in different organs was examined by real-time quantitative polymerase chain reaction and Western blot analysis. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of a TRAF2 homolog molecule in fish.