985 resultados para SIDE-CHAIN MODIFICATIONS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/ 6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helicallike arrangements. Furthermore, calculations indicate that backbone ... side chain interactions involving the N-H of the amide groups and the pi clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand,MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The isotropic crystallographic model of the structure of xylanase I from Thermoascus aurantiacus (TAXI) has now been refined anisotropically at 1.14 Å resolution to a standard residual of R = 11.1% for all data. TAXI is amongst the five largest proteins deposited in the Protein Data Bank to have been refined with anisotropic displacement parameters (ADPs) at this level of resolution. The anisotropy analysis revealed a more isotropic distribution of anisotropy than usually observed previously. Adding ADPs resulted in high-quality electron-density maps which revealed discrepancies from the previously suggested primary sequences for this enzyme. Side-chain conformational disorder was modelled for 16 residues, including Trp275, a bulky residue at the active site. An unrestrained refinement was consistent with the protonation of the catalytic acid/base glutamate and the deprotonation of the nucleophile glutamate, as required for catalysis. The thermal stability of TAXI is reinterpreted in the light of the new refined model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of the duplex d[CG(5-BrU)ACG]2 bound to 9-bromophenazine-4-carboxamide has been solved through MAD phasing at 2.0 Å resolution. It shows an unexpected and previously unreported intercalation cavity stabilized by the drug and novel binding modes of Co2+ ions at certain guanine N7 sites. For the intercalation cavity the terminal cytosine is rotated to pair with the guanine of a symmetry-related duplex to create a pseudo-Holliday junction geometry, with two such cavities linked through the minor groove interactions of the N2/N3 guanine sites at an angle of 40°, creating a quadruplex-like structure. The mode of binding of the drug is shown to be disordered, with the major conformations showing the side chain bound to the N7 position of adjacent guanines. The other end of the duplex exhibits a terminal base fraying in the presence of Co2+ ions linking symmetry-related guanines, causing the helices to intertwine through the minor groove. The stabilization of the structure by the intercalating drug shows that this class of compound may bind to DNA junctions as well as duplex DNA or to strand-nicked DNA (‘hemi-intercalated'), as in the cleavable complex. This suggests a structural basis for the dual poisoning of topoisomerase I and II enzymes by this family of drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study is concerned with a series of acrylate based side-chain liquid crystalline (LC) polymers. Previous studies have shown that these LC polymers have a preference for parallel or perpendicular alignment with respect to the polymer chain which depends on the length of the coupling chain joining the mesogenic unit to the polymer backbone. On the other hand, the dielectric relaxation of these side-chain LC polymers shows a strong relaxation associated to the mesogenic unit dynamics. For samples with parallel alignment, it was found that the dielectric relaxation of the nematic is weaker and broader than the relaxation of the isotropic. By contrast, for samples with perpendicular alignment, the isotropic to nematic transition reduces the broadening the relaxation and increases the relaxation strength. These two features are more evident for samples with short coupling units for which the dielectric relaxation observed appears to be strongly coupled with the backbone dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nematic monodomain liquid crystalline elastomers have been prepared through in situ cross-linking of an acrylate based side-chain liquid crystalline polymer in a magnetic field. At the nematic–isotropic transition, the sample is found to undergo an anisotropic shape change. There is found to be an increase in dimensions perpendicular — and a decrease parallel — to the director, this is consistent with alignment of the polymer backbone parallel to the direction of mesogen alignment in the nematic state. From a quantitative investigation of this behaviour, we estimate the level of backbone anisotropy for the elastomer. As second measure of the backbone anisotropy, the monodomain sample was physically extended. We have investigated, in particular, the situation where a monodomain sample is deformed with the angle between the director and the extension direction approaching 90°. The behaviour on extension of these acrylate samples is related to alternative theoretical interpretations and the backbone anisotropy determined. Comparison of the chain anisotropy derived from these two approaches and the value obtained from previous small-angle neutron scattering measurements on deuterium labelled mixtures of the same polymer shows that some level of chain anisotropy is retained in the isotropic or more strictly weakly paranematic state of the elastomer. The origin and implications of this behaviour are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polymer backbone of a side-chain liquid crystal polymer exhibits an anisotropic shape due to the coupling of the liquid crystal orientational order of the mesogenic side-chains to the backbone. The magnitude and sign of this coupling may be controlled by chemical design. The introduction of chemical cross-links in to such a system provides both a memory of the anisotropic organisation and a mechanism by which the microscopic anisotropy can be realised at a macroscopic level. We show how this anisotropic network structure yields new phenomena when electric or mechanical fields are applied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report rotation of a single director in a nematic monodomain, acrylate based side-chain elastomer which was subjected to mechanical fields applied at angles in the range to the director, , present at the time of network formation. Time and spatially resolving wide angle X-ray scattering, together with polarised light microscopy measurements revealed a pronounced, almost discontinuous switching mode at a critical extension as the strain was applied at angles approaching to , whereas a more continuous rotation was seen when the strain was applied at more acute angles. This director reorientation was more or less uniform across the complete sample and was accompanied by a modest decrease in orientation parameter . At strains sufficient to induce switching there was some continuous distribution of director orientations with fluctuations of 10 although there was no evidence for any localised director inhomogenities such as domain formation. The observed deformation behaviour of these acrylate-based nematic monodomains was in accord with the predictions of a theory developed by Bladon et al., in that the complete set of data could be accounted for through a single parameter describing the chain anisotropy. The experimentally deduced chain anisotropy parameter was in broad agreement with that obtained from small-angle neutron scattering procedures, but was somewhat greater than that obtained by spontaneous shape changes at the nematic-isotropic transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incorporation of potentially catalytic groups in DNA is of interest for the in vitro selection of novel deoxyribozymes, A series of 10 C5-modified analogues of 2'-deoxyuridine triphosphate have been synthesised that possess side chains of differing flexibility and bearing a primary amino or imidazole functionality, For each series of nucleotide analogues differing degrees of flexibility of the C5 side chain was achieved through the use of alkynyl, alkenyl and alkyl moieties, The imidazole function was conjugated to these CS-amino-modified nucleotides using either imidazole 4-acetic acid or imidazole 4-acrylic acid (urocanic acid), The substrate properties of the nucleotides (fully replacing dTTP) with Taq polymerase during PCR have been investigated in order to evaluate their potential applications for in vitro selection experiments, 5-(3-Aminopropynyl)dUTP and 5-(E-3-aminopropenyl)dUTP and their imidazole 4-acetic acid- and urocanic acid-modified conjugates were found to be substrates, In contrast, C5-amino-modified dUTPs with alkane or Z-alkene linkers and their corresponding conjugates were not substrates, The incorporation of these analogues during PCR has been confirmed by inhibition of restriction enzyme digestion using XbaI and by mass spectrometry of the PCR products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

World-wide structural genomics initiatives are rapidly accumulating structures for which limited functional information is available. Additionally, state-of-the art structural prediction programs are now capable of generating at least low resolution structural models of target proteins. Accurate detection and classification of functional sites within both solved and modelled protein structures therefore represents an important challenge. We present a fully automatic site detection method, FuncSite, that uses neural network classifiers to predict the location and type of functionally important sites in protein structures. The method is designed primarily to require only backbone residue positions without the need for specific side-chain atoms to be present. In order to highlight effective site detection in low resolution structural models FuncSite was used to screen model proteins generated using mGenTHREADER on a set of newly released structures. We found effective metal site detection even for moderate quality protein models illustrating the robustness of the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of therapeutic compounds targeting transthyretin (TTR) is challenging due to the low specificity of interaction in the hormone binding site. Such feature is highlighted by the interactions of TTR with diclofenac, a compound with high affinity for TTR, in two dissimilar modes, as evidenced by crystal structure of the complex. We report here structural analysis of the interactions of TTR with two small molecules, 1-amino-5-naphthalene sulfonate (1,5-AmNS) and 1-anilino-8-naphthalene sulfonate (1,8-ANS). Crystal structure of TTR: 1,8-ANS complex reveals a peculiar interaction, through the stacking of the naphthalene ring between the side-chain of Lys15 and Leu17. The sulfonate moiety provides additional interaction with Lys15` and a water-mediated hydrogen bond with Thr119`. The uniqueness of this mode of ligand recognition is corroborated by the crystal structure of TTR in complex with the weak analogue 1,5-AmNS, the binding of which is driven mainly by hydrophobic partition and one electrostatic interaction between the sulfonate group and the Lys15. The ligand binding motif unraveled by 1,8-ANS may open new possibilities to treat TTR amyloid diseases by the elucidation of novel candidates for a more specific pharmacophoric pattern. (C) 2009 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bothropasin is a 48 kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys(189) is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from I`ll SVMPs. The ECD motif is stabilized by the Cys(117)_Cys(310) disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu(276) of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other Pill SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other Pill members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel inhibitor of Schistosoma PNP was identified using an ""in silico"" approach allied to enzyme inhibition assays. The compound has a monocyclic structure which has not been previously described for PNP inhibitors The crystallographic structure of the complex was determined and used to elucidate the binding mode within the active site Furthermore, the predicted pose was very similar to that determined crystallographically, validating the methodology The compound Sm_VS1, despite its low molecular weight, possesses an IC(50) of 1 3 mu M, surprisingly low when compared with purine analogues This is presumably due to the formation of eight hydrogen bonds with key residues in the active site E203, N245 and T244. The results of this study highlight the importance of the use of multiple conformations for the target during virtual screening. Indeed the Sm_VS1 compound was only identified after flipping the N245 side chain It is expected that the structure will be of use in the development of new highly active non-purine based compounds against the Sclustosoma enzyme. (c) 2010 Elsevier B V. All rights reserved