949 resultados para S-antipodal graphs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we present AGWAN (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the AGWAN model to real-world graphs and for generating random graphs from the model. Using the Enron “who communicates with whom” social graph, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to the structure of real-world graphs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many graph datasets are labelled with discrete and numeric attributes. Most frequent substructure discovery algorithms ignore numeric attributes; in this paper we show how they can be used to improve search performance and discrimination. Our thesis is that the most descriptive substructures are those which are normative both in terms of their structure and in terms of their numeric values. We explore the relationship between graph structure and the distribution of attribute values and propose an outlier-detection step, which is used as a constraint during substructure discovery. By pruning anomalous vertices and edges, more weight is given to the most descriptive substructures. Our method is applicable to multi-dimensional numeric attributes; we outline how it can be extended for high-dimensional data. We support our findings with experiments on transaction graphs and single large graphs from the domains of physical building security and digital forensics, measuring the effect on runtime, memory requirements and coverage of discovered patterns, relative to the unconstrained approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy of a graph is equal to the sum of the absolute values of its eigenvalues. The energy of a matrix is equal to the sum of its singular values. We establish relations between the energy of the line graph of a graph G and the energies associated with the Laplacian and signless Laplacian matrices of G. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An induced matching of a graph G is a matching having no two edges joined by an edge. An efficient edge dominating set of G is an induced matching M such that every other edge of G is adjacent to some edge in M. We relate maximum induced matchings and efficient edge dominating sets, showing that efficient edge dominating sets are maximum induced matchings, and that maximum induced matchings on regular graphs with efficient edge dominating sets are efficient edge dominating sets. A necessary condition for the existence of efficient edge dominating sets in terms of spectra of graphs is established. We also prove that, for arbitrary fixed p ≥ 3, deciding on the existence of efficient edge dominating sets on p-regular graphs is NP-complete. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An upper bound for the sum of the squares of the entries of the principal eigenvector corresponding to a vertex subset inducing a k-regular subgraph is introduced and applied to the determination of an upper bound on the order of such induced subgraphs. Furthermore, for some connected graphs we establish a lower bound for the sum of squares of the entries of the principal eigenvector corresponding to the vertices of an independent set. Moreover, a spectral characterization of families of split graphs, involving its index and the entries of the principal eigenvector corresponding to the vertices of the maximum independent set is given. In particular, the complete split graph case is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Cardon and Tuckfield (2011) [1] have described the Jordan canonical form for a class of zero-one matrices, in terms of its associated directed graph. In this paper, we generalize this result to describe the Jordan canonical form of a weighted adjacency matrix A in terms of its weighted directed graph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spectral graph theory a graph with least eigenvalue 2 is exceptional if it is connected, has least eigenvalue greater than or equal to 2, and it is not a generalized line graph. A ðk; tÞ-regular set S of a graph is a vertex subset, inducing a k-regular subgraph such that every vertex not in S has t neighbors in S. We present a recursive construction of all regular exceptional graphs as successive extensions by regular sets.