900 resultados para Rubber plantation
Resumo:
In this paper, unepoxidized ethylene propylene diene rubber (uEPDM) was first epoxidized with formic acid and H2O2, and then the epoxidized ethylene propylene diene rubber (eEPDM) was melt-mixed with PET resin in a Brabender-like apparatus. Toughening of PET matrix was achieved by this method. The dispersion of rubber particles and phase structure of the blends were also observed by SEM. It has been suggested that the epoxy groups in the eEPDM could react with PET end groups to form a graft copolymer which could act as an interfacial compatibilizer between the PBT matrix and eEPDM rubber dispersed phase. This is beneficial to the improvement of the impact performance of PBT. (C) 1997 Elsevier Science Ltd.
Resumo:
Blends of poly (butylene terephthalate) (PBT) and epoxided ethylene-propylene-diene terpolymer (EEPDM) were prepared. Their mechanical properties and morphology were studied by Izod impact test machine and scanning electronic microscope respectively, It was found that the notched Izod impact strength of blend PBT/EEPDM was as about 23 times as that of pure PET and about 10 times as that of blend PBT/EPDM at room temperature, The dispersed rubber particles were much smaller and the phase boundary was more blurred in blend PBT/EEPDM than in blend PBT/EPDM. The toughness of blend PBT/EEPDM was much more better than that of blend PET and PBT/EPDM, which was in good agreement with the difference between their morphologies.
Resumo:
Raw polymer and compound of hydrogenated acrylonitrile butadiene rubber (HNBR) were subjected to gamma-ray irradiation. Crosslinking was found to be the main chemical reaction induced by irradiation; the ratio of chain scission to crosslinking as well as
Resumo:
End-linked hydroxyl-terminated polybutadiene containing unattached linear polybutadiene was used to study the effect of reptating species on the fracture mechanics of rubber networks. The concentration of reptating species in the networks ranged from 0 to 100%. The fracture mechanics of the networks was described using the critical strain energy release rate in mode III testing, i.e. the tearing energy. The tearing energy was measured at room temperature using a 'trouser' specimen at a strain rate spanning five logarithmic decades. When the strain rate was as low as 10(-4) s-1, the tearing energy of the networks increased with reduction in reptating species. In this case the reptating species did not contribute to the tearing energy of the networks due to relaxation. Hence, the tearing energy increased with the number of crosslinked chains per unit volume in the networks. At a strain rate ranging from 10(-3) to 10(-1) s-1, the tearing energy of the networks was governed by local viscosity. The tearing energies of the networks containing various amounts of reptating species were superimposed to give a master curve based on the Williams-Landel-Ferry equation.
Resumo:
A novel poly sulfone/polyethylene oxide/silicone rubber (PSOPEO/SR) multilayer composite membrane was fabricated by double coating polysulfone substrate membrane with polyethylene oxide and silicone rubber. Gas permeation experiments were performed at 30 degrees C for hydrogen and nitrogen. PSf(PEO/SR membrane displayed high and steady performance for H-2/N-2: permeances of H-2 and N-2 of 49.51 and 0.601 GPU, respectively, and H-2/N-2 ideal separation factor of 82.3. It was explained that layer interfaces due to the introduction of PEO layer act as the permselective media and are responsible for the higher H-2/N-2 ideal separation factor which has exceeded the intrinsic permselectivities of the three polymers used in this study. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself.
Resumo:
Blanket bog lakes are a characteristic feature of blanket bog habitats and harbour many rare and threatened invertebrate species. Despite their potential conservation value, however, very little is known about their physico-chemical or biological characteristics in western Europe, and their reference conditions are still unknown in Ireland. Furthermore, they are under considerable threat in Ireland from a number of sources, particularly afforestation of their catchments by exotic conifers. Plantation forestry can potentially lead to the increased input of substances including hydrogen ions (H+), plants nutrients, dissolved organic carbon (DOC), heavy metals and sediment. The aims of this study were to investigate the effect of conifer plantation forestry on the hydrochemistry and ecology of blanket bog lakes in western Ireland. Lake hydrochemistry, littoral Chydoridae (Cladocera) and littoral macroinvertebrate communities were compared among replicate lakes selected from three distinct catchment land use categories: i) unplanted blanket bog only present in the catchment, ii) mature (closed-canopy) conifer plantation forests only present in the catchment and iii) catchments containing mature conifer plantation forests with recently clearfelled areas. All three catchment land uses were replicated across two geologies: sandstone and granite. Lakes with afforested catchments across both geologies had elevated concentrations of phosphorus (P), nitrogen (N), total dissolved organic carbon (TDOC), aluminium (Al) and iron (Fe), with the highest concentrations of each parameter recorded from lakes with catchment clearfelling. Dissolved oxygen concentrations were also significantly reduced in the afforested lakes, particularly the clearfell lakes. This change in lake hydrochemistry was associated with profound changes in lake invertebrate communities. Within the chydorid communities, the dominance of Alonopsis elongata in the unplanted blanket bog lakes shifted to dominance by the smaller bodied Chydorus sphaericus, along with Alonella nana, Alonella excisa and Alonella exigua, in the plantation forestry-affected lakes, consistent with a shift in lake trophy. Similarly, there was marked changes in the macroinvertebrate communities, especially for the Coleoptera and Heteroptera assemblages which revealed increased taxon richness and abundance in the nutrient-enriched lakes. In terms of conservation status, despite having the greatest species-quality scores (SQS) and species richness, three of the four International Union for the Conservation of Nature (IUCN) red-listed species of Coleoptera and Odonata recorded during the study were absent from lakes subject to catchment clearfelling. The relative strengths of bottom-up (forestry-mediated nutrient enrichment) and top-down (fish) forces in structuring littoral macroinvertebrate communities was investigated in a separate study. Nutrient enrichment was shown to be the dominant force acting on communities, with fish having a lesser influence. These results confirmed that plantation forestry poses the single greatest threat to the conservation status of blanket bog lakes in western Ireland. The findings of this study have major implications for the management of afforested peatlands. Further research is required on blanket bog lakes to prevent any further plantation forestry-mediated habitat deterioration of this rare and protected habitat.
Resumo:
Conservators have long been aware of the problems associated with the preservation of rubber objects due to inherent instability that can be attributed, in part, to the presence of additives. Inorganic additives, such as fillers, accelerators, stabilizers, and special ingredients are necessary in manufacturing to alter the properties of natural rubber. These materials all have different interactions with the rubber, and each other, and differing effects on the ageing process. To date, the most effective and accepted methods to preserve rubber are cold, dark storage of objects, or the use of low oxygen environments. While these methods are effective, they greatly limit access. The application of coatings to the surface of rubber objects can slow deterioration and greatly increase the ability of an institution to handle and display rubber objects. While numerous coatings for preventive and interventive treatment have been tested, none have been so successful to warrant routine use. The first section of this research highlighted the relationship between the inclusion of certain additives in natural rubber objects and the accelerated or slowed down overall degradation. In the second part of this research, the acrylic varnishes Golden Polymer Varnish with UVLS, Lascaux Acrylic Transparent Varnish-UV, Sennelier Matte Lacquer with UV Protection, and Liquitex Soluvar Varnish containing ultraviolet light absorbers or stabilizers were tested as a preventative coating for rubber. Through testing the visual and physical properties of the samples, as well as compound analysis the results of this research suggest that acrylic varnishes do provide protection, each to varying degrees. The results also provided insight into the behavior of rubber and these varnishes with continuing light exposure.
Resumo:
Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.
Resumo:
The possible use of wood ash as an adsorbent of nickel sulphate from dilute solutions and the effect of operating parameters were investigated in this study. The rate constants of adsorption were determined at different concentrations and temperatures. The applicability of the first-order reversible equation and an empirical kinetic model were tested to understand the kinetics of nickel sulphate removal at different concentrations. Pore diffusion was found as the rate-controlling step. The Langmuir and Freundlich isotherms were applied to find out the adsorption parameters. The activation energy of adsorption was -11.54 kJ mol-1. The value of the enthalpy change was ?H=-10.35 kcal mol-1.