916 resultados para Round and square balers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of citalopram was studied by square-wave and square-wave adsorptive-stripping voltammetry (SWAdSV). Citalopram can be reduced and accumulated at a mercury drop electrode, with a maximum peak current intensity being obtained at a potential of approximately -1.25V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 12. A SWAdSV method has been developed for the determination of citalopram in pharmaceutical preparations. The method shows a linear range between 1.0x10-7 and 2.0x10-6 mol L-1 with a limit of detection of 5x10-8 mol L-1 for an accumulation time of 30 s. The precision of the method was evaluated by assessing the repeatability and intermediate precision, achieving good relative standard deviations in all cases (≤2.3%). The proposed method was applied to the determination of citalopram in five pharmaceutical products and the results obtained are in good agreement with the labeled values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of the herbicide Asulam was studied by cyclic and square wave voltammetry. Asulam may be irreversibly oxidised at a glassy carbon electrode. Maximum currents were obtained at pH=1.9 in aqueous electrolyte solution. Based on the electrochemical behaviour of Asulam, two analytical methodologies were developed for its determination in water samples, using square wave voltammetry (SWV) and flow injection analysis (FIA) coupled with an amperometric detector. Limits of detection of 7.1x10-6 mol L-1 and 1.2x10-8 mol L-1 for SWV and FIA respectively, were achieved. Repeatability was calculated by assessing the relative standard deviation (%) for 10 consecutive determinations of one sample. The found values were 2.1% for SWV and 5.0% for FIA. Validation of the results provided by SWV and FIA methodologies was performed by comparison with results from an HPLC-DAD technique. Good relative deviations were found (<5%). Recovery trials were performed to assess the accuracy of the results and the obtained values were between 84% and 107% for both methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Mestre em Educação Matemática na Educação Pré-Escolar e nos 1.º e 2.º Ciclos do Ensino Básico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well-known that non-cooperative and cooperative game theory may yield different solutions to games. These differences are particularly dramatic in the case of truels, or three-person duels, in which the players may fire sequentially or simultaneously, and the games may be one-round or n-round. Thus, it is never a Nash equilibrium for all players to hold their fire in any of these games, whereas in simultaneous one-round and n-round truels such cooperation, wherein everybody survives, is in both the a -core and ß -core. On the other hand, both cores may be empty, indicating a lack of stability, when the unique Nash equilibrium is one survivor. Conditions under which each approach seems most applicable are discussed. Although it might be desirable to subsume the two approaches within a unified framework, such unification seems unlikely since the two approaches are grounded in fundamentally different notions of stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce a new approach for volatility modeling in discrete and continuous time. We follow the stochastic volatility literature by assuming that the variance is a function of a state variable. However, instead of assuming that the loading function is ad hoc (e.g., exponential or affine), we assume that it is a linear combination of the eigenfunctions of the conditional expectation (resp. infinitesimal generator) operator associated to the state variable in discrete (resp. continuous) time. Special examples are the popular log-normal and square-root models where the eigenfunctions are the Hermite and Laguerre polynomials respectively. The eigenfunction approach has at least six advantages: i) it is general since any square integrable function may be written as a linear combination of the eigenfunctions; ii) the orthogonality of the eigenfunctions leads to the traditional interpretations of the linear principal components analysis; iii) the implied dynamics of the variance and squared return processes are ARMA and, hence, simple for forecasting and inference purposes; (iv) more importantly, this generates fat tails for the variance and returns processes; v) in contrast to popular models, the variance of the variance is a flexible function of the variance; vi) these models are closed under temporal aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

À l'aide des tout derniers modèles narratologiques développés entre autres par Ansgar Nünning, nous nous penchons sur l'oeuvre d'Eveline Hasler, une voix phare de la littérature alémanique contemporaine. À partir d’un corpus de six romans, nous examinons de façon systématique sa poétique du roman historique au regard 1) des techniques narratives, 2) de la marginalité de ses personnages en société, 3) de la conception de l’Histoire, 4) de l'image critique qu'elle présente de la Suisse. Il en ressort un portrait très nuancé de l'oeuvre de Hasler, puisqu’elle allie un récit principalement réaliste, plutôt traditionnel, mais aussi inspiré du langage cinématographique, à des passages métahistoriographiques postmodernes, où une narratrice assimilable à l’auteure fait part au « je » de ses réflexions sur l'Histoire. Même si ces brefs passages relativement rares rappellent sans contredit la posture de l’historien, ils s’inscrivent toutefois dans la fiction, laquelle actualise le passé dans la perspective historique d’un lecteur contemporain. De fait, l’œuvre de Hasler se présente comme un jeu habile avec la liberté poétique et le souci de véracité historique, ce à quoi concourt l’imbrication de documents originaux en italique dans le roman. Par ailleurs, la question de la marginalité en société joue un rôle prépondérant chez Hasler, car tous ses personnages principaux sont autant de marginaux, de Außenseiter. Cette problématique montre entre autres les limites de l’Aufklärung, étant donné que ses tenants, les adversaires des marginaux, se targuent le plus souvent d’être motivés par la pensée éclairante pour mieux la pervertir. Il en résulte la mise à l’écart des individus dérangeants — la prétendue sorcière, le géant et les femmes qui remettent en cause l’organisation patriarcale. Or, certains marginaux de Hasler parviennent à s’arracher un espace de liberté dans la marge, au prix de leurs racines helvétiques. Ainsi, ces marginaux peinent à s’inscrire dans l’Histoire dite officielle, ce que Hasler tente de rectifier en leur redonnant une voix. Sur le plan individuel, la plupart d’entre eux expérimentent une évolution circulaire, puisqu’ils ne parviennent pas à sortir de la marge (sauf peut-être Henry Dunant). Cette impression de tourner en rond s’oppose à une conception de l’Histoire humaine qui se déroule en continuum, puisque les exclusions d’hier préfigurent celles d’aujourd’hui. Au-delà de cette mesure humaine du temps, l’horizon temporel de la nature s’inscrit pour sa part dans la permanence. Ainsi, Hasler développe une conception historique qui varie selon des points de vue coexistants. Cet amalgame est le plus souvent marqué par un certain pessimisme, comme le dénote la vie d’Emily Kempin associée au mythe d’Icare. Finalement, tous les acteurs historiques de Hasler appartiennent au contexte helvétique et en présentent une image assez rétrograde, laquelle se dévoile non seulement à travers la fictionnalisation des lieux, mais aussi par des références à trois symboles nationaux : les Alpes, le réduit helvétique et la légende de Guillaume Tell. Hasler fait le procès de ces mythes, associés à la liberté et à la sauvegarde de ce « peuple de bergers », en montrant que la Suisse n’apporte pas de solution originale aux défis de l’Occident.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wurden elektronische Eigenschaften der sogenannten Spiroverbin-dungen untersucht, die aus zwei durch ein gemeinsames Spiro-Kohlenstoffatom miteinander verbundenen π-Systemen bestehen. Solche Untersuchungen sind notwendig, um die gezielte Synthese organischer Materialien mit bestimmten optischen, elektrischen, photoelektrischen oder magnetischen Eigenschaften zu ermöglichen. Im einzelnen wurden mit Hilfe der Cyclovoltammetrie, Square-Wave-Voltammetrie und Spektroelektrochemie eine Reihe homologer Spiro-p-oligophenyle, sowie symmetrisch und unsymmetrisch substituierte Spiroverbindungen und Spirocyclopentadithiophene unter-sucht. Dabei ergaben sich folgende Einflussfaktoren: Kettenlänge, verschiedene Substituenten (Trimethylsilyl, tert-Butyl, Fluor, Pyridyl, perfluoriertes Pyridyl, Dimethylamino-Gruppe), verschiedene Positionen der Substitution, Lage der Spiroverknüpfung und Art des π-Systems im Spirokern. Die elektronischen Eigenschaften der untersuchten Verbindungen variieren systema-tisch mit der Kettenlänge. So vermindert sich der Betrag der Redoxpotentiale der Spiroverbin-dungen mit Zunahme der Kettenlänge, während die Anzahl der übertragenen Elektronen mit zunehmender Kettenlänge wächst. Die Absorption der neutralen und geladenen Spezies ver-schiebt sich mit steigender Kettenlänge bathochrom. Der Substituenteneinfluss auf die Poten-tiallage hängt davon ab, welcher der Effekte +I, -I, +M, -M überwiegt; dabei spielt auch die Position der Substitution eine Rolle. Weiter lässt sich der Einfluss der Lage der Spiroverknüpfung auf die Redoxpotentiale mit der verschiedenen Coulomb-Abstoßung innerhalb oder/und zwischen Phenylketten bei symmetrisch und unsymmetrisch verknüpften Spiroverbindungen begründen. Schließlich wurden die Redoxmechanismen der untersuchten Spiroverbindungen er-mittelt. Die meisten Verbindungen werden zum Bis(radikalion) reduziert bzw. oxidiert (Me-chanismus A). Nur wenige Verbindungen werden nach Mechanismus B reduziert, in dem das Elektron unter Bildung eines Dianions in die schon einfach reduzierte Molekülhälfte über-geht. Die Unterschiede der Redoxpotentiale, der Lage der Absorption, des Reduktionsme-chanismus der Verbindungen mit unterschiedlichen Spirokernen (Spirobifluoren und Spiro-cyclopentadithiophen) konnten mit den unterschiedlichen elektronischen Strukturen von Phe-nyl- und Thiophenring (aromatisches und heteroaromatisches π System) erklärt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss the consensus problem for synchronous distributed systems with orderly crash failures. For a synchronous distributed system of n processes with up to t crash failures and f failures actually occur, first, we present a bivalency argument proof to solve the open problem of proving the lower bound, min (t + 1, f + 2) rounds, for early-stopping synchronous consensus with orderly crash failures, where t < n - 1. Then, we extend the system model with orderly crash failures to a new model in which a process is allowed to send multiple messages to the same destination process in a round and the failing processes still respect the order specified by the protocol in sending messages. For this new model, we present a uniform consensus protocol, in which all non-faulty processes always decide and stop immediately by the end of f + 1 rounds. We prove that the lower bound of early stopping protocols for both consensus and uniform consensus are f + 1 rounds under the new model, and our proposed protocol is optimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We bridge the properties of the regular triangular, square, and hexagonal honeycomb Voronoi tessellations of the plane to the Poisson-Voronoi case, thus analyzing in a common framework symmetry breaking processes and the approach to uniform random distributions of tessellation-generating points. We resort to ensemble simulations of tessellations generated by points whose regular positions are perturbed through a Gaussian noise, whose variance is given by the parameter α2 times the square of the inverse of the average density of points. We analyze the number of sides, the area, and the perimeter of the Voronoi cells. For all valuesα >0, hexagons constitute the most common class of cells, and 2-parameter gamma distributions provide an efficient description of the statistical properties of the analyzed geometrical characteristics. The introduction of noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α = 0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise withα <0.12. For all tessellations and for small values of α, we observe a linear dependence on α of the ensemble mean of the standard deviation of the area and perimeter of the cells. Already for a moderate amount of Gaussian noise (α >0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α >2, results converge to those of Poisson-Voronoi tessellations. The geometrical properties of n-sided cells change with α until the Poisson- Voronoi limit is reached for α > 2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established. This law allows for an easy link to the Lewis law for areas and agrees with exact asymptotic results. Finally, for α >1, the ensemble mean of the cells area and perimeter restricted to the hexagonal cells agree remarkably well with the full ensemble mean; this reinforces the idea that hexagons, beyond their ubiquitous numerical prominence, can be interpreted as typical polygons in 2D Voronoi tessellations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity. The same applies in 3D, where noise degrades the isoperimetric ratio for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established, which agrees with exact asymptotic results. Anomalous scaling relations are observed between the perimeter and the area in the 2D and between the areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure (3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamow's explanation of the exponential decay law uses complex 'eigenvalues' and exponentially growing 'eigenfunctions'. This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any wavefunction is given by its expansion in generalized eigenfunctions, we shall answer this question in the most straightforward manner, which at the same time is accessible to graduate students and specialists. Moreover, the presentation can well be used in physics lectures to students.