966 resultados para River Piranhas-Açu


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive clearing of floodplain forests potentially reduces organic matter available to floodplain wetlands. Furthermore, on rivers regulated to provide irrigation water in summer, floodplain wetlands that were previously inundated in spring, now flood in summer/autumn. In the Murray–Darling Basin, Australia, this has changed the timing of organic matter entering the aquatic phase, since leaf fall peaks in summer. Field surveys and mesocosm experiments on floodplain wetlands on the River Murray revealed faster processing rates of leaves in summer/autumn than spring, and no difference between cleared and forested wetlands. Temperature and leaf carbon : nitrogen ratio could not explain these differences, and instead, changes to leaf chemistry associated with ‘terrestrial ageing’ between peak leaf fall in summer and inundation in spring is more likely. The results indicated that the reduction of input of organic matter through riparian tree clearing and changing the timing of inundation interact to alter organic-matter standing stocks and rates of decomposition in floodplain wetlands. Restoring both natural timing of high flows and riparian vegetation might be required for recovery of these wetlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Orange River, South Africa’s largest river, is a critical water resource for the country. In spite of the clear economic benefits of regulating river flows through a series of impoundments, one of the significant undesirable ecological consequences of this regulation has been the regular outbreaks of the pest blackfly species Simulium chutteri and S. damnosum s.l. (Diptera: Simuliidae). The current control programme, carried out by the South African National Department of Agriculture, uses regular applications, by helicopter, of the target-specific bacterial larvicide Bacillus thuringiensis var. israelensis. While cost-benefit analyses show significant benefits to the control programme, benefits could potentially be further increased through applying smaller volumes of larvicide in an optimised manner, which incorporates upstream residual amounts of pesticide through downstream carry. Using an optimisation technique applied in the West African Onchocerciasis Control Programme, to a 136 km stretch of the Orange River which includes 31 blackfly breeding sites, we demonstrate that 28.5% less larvicide could be used to potentially achieve the same control of blackfly. This translates into potential annual savings of between R540 000 and R1 800 000. A comparison of larvicide volumes estimated using traditional vs. optimised approaches at different discharges, illustrates that the savings on optimisation decline linearly with increasing flow volumes. Larvicide applications at the lowest discharge considered (40 m3·s-1) showed the greatest benefits from optimisations, with benefits remaining but decreasing to a theoretical 30% up to median flows of 100 m3·s-1. Given that almost 70% of flows in July are less than 100 m3·s-1, we suggest that an optimised approach is appropriate for the Orange River Blackfly Control Programme, particularly for flow volumes of less than 100 m3·s-1. We recommend that trials be undertaken over two reaches of the Orange River, one using the traditional approach, and another using the optimised approach, to test the efficacy of using optimised volumes of B.t.i.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wetland and floodplain ecosystems along many regulated rivers are highly stressed, primarily due to a lack of environmental flows of appropriate magnitude, frequency, duration, and timing to support ecological functions. In the absence of increased environmental flows, the ecological health of river ecosystems can be enhanced by the operation of existing and new flow-control infrastructure (weirs and regulators) to return more natural environmental flow regimes to specific areas. However, determining the optimal investment and operation strategies over time is a complex task due to several factors including the multiple environmental values attached to wetlands, spatial and temporal heterogeneity and dependencies, nonlinearity, and time-dependent decisions. This makes for a very large number of decision variables over a long planning horizon. The focus of this paper is the development of a nonlinear integer programming model that accommodates these complexities. The mathematical objective aims to return the natural flow regime of key components of river ecosystems in terms of flood timing, flood duration, and interflood period. We applied a 2-stage recursive heuristic using tabu search to solve the model and tested it on the entire South Australian River Murray floodplain. We conclude that modern meta-heuristics can be used to solve the very complex nonlinear problems with spatial and temporal dependencies typical of environmental flow allocation in regulated river ecosystems. The model has been used to inform the investment in, and operation of, flow-control infrastructure in the South Australian River Murray.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossils of the deep marine ostracod, Clinocythereis australis Ayress & Swanson, 1991 occur within the Tambo River Formation, Gippsland Basin, southeastern Australia and record an approximately 6 Ma phase of late Miocene coastal ocean upwelling within this region. The presence of deep marine faunal elements within late Miocene Mitchellian strata is in contrast to the absence of such faunal elements in latest Miocene Cheltenhamian and younger marine strata of the Bass Strait hinterland. The absence of deep marine faunal elements in post-Mitchellian onshore strata is due to the Kosciusko Uplift, which transformed Bass Strait into a wholly shallow seaway placing adjacent coastal regions beyond the reach of ocean upwelling influences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endemic asp, Aspius vorax, from the middle section of the Euphrates River flowing through eastern Syria were studied to determine the main characteristics of their population structure, morphological parameters and reproductive biology. Samples ranged between 0+ and 4+ years of age and were dominated by 2+ years old group. Total length (TL) ranged between 19 and 70 cm corresponding with 46 to 2824.5 g weight, respectively. Fish growth has isometric pattern and the overall sex ratio was unbiased. Seasonal changes in the condition factor were related with the water temperature as well as the spawning season. Annual cycle of gonadosomatic index (GSI) readings indicated that spawning season occur around March when fish longer than 36 cm can mate. Average pre-spawning GSI was greater in individuals older than 2 years. Meanwhile, female fecundity was highly related to TL and weight. These findings did not always concur with previous observations from other asp populations, mainly in southern and northern Mesopotamia. Our results highlighted basic biological aspects of the local population and indicated differences between populations which can assist in fisheries management, conservation and commercial culture of the investigated species.