992 resultados para Rhizobium leguminosarum bv. trifolii


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical time parameter tau. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed tau. In this paper, we study the existence of exceptional (random) values of tau where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional tau. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by Haggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather different from the situation for the dynamical random walks of Benjamini, Haggstrom, Peres and Steif. For example, we prove that the walk from the origin S(0)(tau) violates the law of the iterated logarithm (LIL) on a set of tau of Hausdorff dimension one. We also discuss how these and other results should extend to the dynamical Brownian web, the natural scaling limit of the DyDW. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that for any a-mixing stationary process the hitting time of any n-string A(n) converges, when suitably normalized, to an exponential law. We identify the normalization constant lambda(A(n)). A similar statement holds also for the return time. To establish this result we prove two other results of independent interest. First, we show a relation between the rescaled hitting time and the rescaled return time, generalizing a theorem of Haydn, Lacroix and Vaienti. Second, we show that for positive entropy systems, the probability of observing any n-string in n consecutive observations goes to zero as n goes to infinity. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We considered whether ecological restoration using high diversity of native tree species serves to restore nitrogen dynamics in the Brazilian Atlantic Forest. We measured delta(15)N and N content in green foliage and soil; vegetation N:P ratio; and soil N mineralization in a preserved natural forest and restored forests of ages 21 and 52 years. Green foliage delta(15)N values, N content, N:P ratio, inorganic N and net mineralization and nitrification rates were all higher, the older the forest. Our findings indicate that the recuperation of N cycling has not been achieved yet in the restored forests even after 52 years, but show that they are following a trajectory of development that is characterized by their N cycling intensity becoming similar to a natural mature forest of the same original forest formation. This study demonstrated that some young restored forests are more limited by N compared to mature natural forests. We document that the recuperation of N cycling in tropical forests can be achieved through ecological restoration actions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0-1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems >= 4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006-2007. Live AGB ranged from 166.3 Mg ha(-1) (bootstrapped 95% CI: 1444,187.0) to 283.2 Mg ha(-1) (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64-75%) with limited crown illumination but the largest proportion of the live AGB (68-85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil compaction that follows the clearing of tropical forest for cattle pasture is associated with lower soil hydraulic conductivity and increased frequency and volume of overland flow. We investigated the frequency of perched water tables, overland flow and stormflow in an Amazon forest and in an adjacent 25-year-old pasture cleared from the same forest. We compared the results with the frequencies of these phenomena estimated from comparisons of rainfall intensity and soil hydraulic conductivity. The frequency of perched water tables based on rainfall intensity and soil hydraulic conductivity was expected to double in pasture compared with forest. This corresponded closely with an approximate doubling of the frequency of stormflow and overland flow in pasture. In contrast, the stormflow volume in pasture increased 17-fold. This disproportional increase of stormflow resulted from overland flow generation over large areas of pasture, while overland flow generation in the forest was spatially limited and was observed only very near the stream channel. In both catchments, stormflow was generated by saturation excess because of perched water tables and near-surface groundwater levels. Stormflow was occasionally generated in the forest by rapid return flow from macropores, while slow return flow from a continuous perched water table was more common in the pasture. These results suggest that deforestation for pasture alters fundamental mechanisms of stormflow generation and may increase runoff volumes over wide regions of Amazonia. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and Could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC Storage by 1.08 +/- 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 +/- 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 +/- 0.04. but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor Value of 0.98 +/- 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results Suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimates of greenhouse-gas emissions from deforestation are highly uncertain because of high variability in key parameters and because of the limited number of studies providing field measurements of these parameters. One such parameter is burning efficiency, which determines how much of the original forest`s aboveground carbon stock will be released in the burn, as well as how much will later be released by decay and how much will remain as charcoal. In this paper we examined the fate of biomass from a semideciduous tropical forest in the ""arc of deforestation,"" where clearing activity is concentrated along the southern edge of the Amazon forest. We estimated carbon content, charcoal formation and burning efficiency by direct measurements (cutting and weighing) and by line-intersect sampling (LIS) done along the axis of each plot before and after burning of felled vegetation. The total aboveground dry biomass found here (219.3 Mg ha(-1)) is lower than the values found in studies that have been done in other parts of the Amazon region. Values for burning efficiency (65%) and charcoal formation (6.0%, or 5.98 Mg C ha(-1)) were much higher than those found in past studies in tropical areas. The percentage of trunk biomass lost in burning (49%) was substantially higher than has been found in previous studies. This difference may be explained by the concentration of more stems in the smaller diameter classes and the low humidity of the fuel (the dry season was unusually long in 2007, the year of the burn). This study provides the first measurements of forest burning parameters for a group of forest types that is now undergoing rapid deforestation. The burning parameters estimated here indicate substantially higher burning efficiency than has been found in other Amazonian forest types. Quantification of burning efficiency is critical to estimates of trace-gas emissions from deforestation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No-till (NT) adoption is an essential tool for development of sustainable agricultural systems, and how NT affects the soil organic C (SOC) dynamics is a key component of these systems. The effect of a plow tillage (PT) and NT age chronosequence on SOC concentration and interactions with soil fertility were assessed in a variable charge Oxisol, located in the South Center quadrant of Parana State, Brazil (50 degrees 23`W and 24 degrees 36`S). The chronosequence consisted of the following six sites: (i) native field (NF); (ii) PT of the native field (PNF-1) involving conversion of natural vegetation to cropland; (iii) NT for 10 years (NT-10); (iv) NT for 20 years (NT-20); (v) NT for 22 years (NT-22); and (vi) conventional tillage for 22 years (CT-22) involving PT with one disking after summer harvest and one after winter harvest to 20 cm depth plus two harrow disking. Soil samples were collected from five depths (0-2.5; 2.5-5; 5-10; 10-20; and 20-40 cm) and SOC, pH (in H(2)O and KCl), Delta pH, potential acidity, exchangeable bases, and cation exchangeable capacity (CEC) were measured. An increase in SOC concentration positively affected the pH, the negative charge and the CEC and negatively impacted potential acidity. Regression analyses indicated a close relationship between the SOC concentration and other parameters measured in this study. The regression fitted between SOC concentration and CEC showed a close relationship. There was an increase in negative charge and CEC with increase in SOC concentration: CEC increased by 0.37 cmol(c) kg(-1) for every g of C kg(-1) soil. The ratio of ECEC:SOC was 0.23 cmol(c) kg(-1) for NF and increased to 0.49 cmol(c) kg(-1) for NT-22. The rates of P and K for 0-10 cm depth increased by 9.66 kg ha(-1) yr(-1) and 17.93 kg ha(-1) yr(-1), respectively, with NF as a base line. The data presented support the conclusion that long-term NT is a useful strategy for improving fertility of soils with variable charge. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grassland management affects soil organic carbon (SOC) content and a variety of management options have been proposed to sequester carbon. However, studies conducted in Brazilian pastures have shown divergent responses for the SOC depending on management practices. Our objective was to evaluate the effects of management on SOC stocks in grasslands of the Brazilian states of Rondonia and Mato Grosso, and to derive region-specific factors for soil C stock change associated with different management conditions. Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a factor of 0.91 +/- 0.14, nominal grassland management reduced SOC stock for Oxisols by a relatively small factor of 0.99 +/- 0.08, whereas, SOC storage increased by a factor of 1.24 +/- 0.07 with nominal management for other soil types. Improved grassland management on Oxisols increased SOC storage by 1.19 +/- 0.07, relative to native stocks, but there were insufficient data to evaluate the impact of improved grassland management for other soil types. Using these results, we also evaluated the potential for grassland management to sequester or emit C to the atmosphere, and found that degraded grassland management decreased stocks by about 0.27-0.28 Mg C ha(-1) yr(-1); nominal management on Oxisols decreased C at a rate of 0.03 Mg C ha(-1) yr(-1), while nominal management on others soil types and improved management on Oxisols increased stocks by 0.72 Mg C ha(-1) yr(-1) and 0.61 Mg C ha(-1) yr(-1), respectively. Therefore, when well managed or improved, grasslands in Rondonia and Mato Grosso states have the potential to sequester C. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replacement of undisturbed tropical forest with cattle pasture has the potential to greatly modify the hydrology of small watersheds and the fluxes of solutes. We examined the fluxes of water, Cl(-), NO(3)(-)-N: SO(4)(2--)-S, NH(4)(+)-N, Na(+), K(+), Mg(2+) and Ca(2+) in different flow paths in similar to 1 ha catchments of undisturbed open tropical rainforest and a 20 year-old pasture established from forest in the southwestern Brazilian Amazon state of Rondonia. Storm flow discharge was 18% of incident rainfall in pasture, but only 1% in forest. Quickflow predominated over baseflow in both catchments and in both wet and dry seasons. In the pasture, groundwater and quickflow were important flow paths for the export of all solutes. In the forest, quickflow was important for NO(3)(-)-N export, but all other solutes were exported primarily by groundwater outflow. Both catchments were sinks for SO(4)(2-)-S and Ca(2+), and sources of Na(+). The pasture catchment also lost K(+) and Mg(2+) because of higher overland flow frequency and volume and to cattle excrement. These results show that forest clearing dramatically influences small watershed hydrology by increasing quickflow and water export to streams. They also indicate that tropical forest watersheds are highly conservative for most solutes but that pastures continue to lose important cations even decades after deforestation and pasture establishment. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondonia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of NH4+, Na+, K+, Ca2+ Mg2+,, Cl-, NO3-, SO42- and DOC. The coefficient 3 4 cient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly tow compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall. patterns was Low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of ""hot"" and ""cold"" spots of throughfall. quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition -induced biochemical microhabitats in the soil. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blanks (flasks without substrate containing only inoculum and medium) are used in vitro to correct for gas. CH(4) and residual organic matter (OM) fermented in inoculum. However inclusion of rumen fermentation modifiers may affect fermentation of OM in the substrate and inoculum. Thus, data correction using blanks that lack additives may result in inaccurate adjustment for background fermentation. Our objective was to evaluate impacts of using blanks containing additive (i.e., specific blanks) or blanks without additive on estimation of in vitro net gas and CH(4) production. We used the semi-automatic in vitro gas production technique including monensin sodium at 2.08 mg/l of buffered rumen fluid (Experiment 1) or carvacrol, eugenol and 1,8-cineol at 667 mg/l (Experiment 2) in flasks with substrate and in blank flasks. At 16h of incubation, monensin reduced (P <= 0.02) total gas production in flasks containing substrate (162.0 ml versus 146.3 ml) and in blanks (84.4 ml versus 79.2 ml). Total methane production was also decreased (P <= 0.05) by adding monensin to flasks containing substrate (15.7 ml versus 11.9 ml) as well as in blanks (6.4 ml versus 5.0 ml). Inclusion of carvacrol or eugenol reduced (P <= 0.05) total gas and CH(4) production in flasks with substrate and in blanks, but in a more pronounced manner than monensin. For these three additives, correction for blank without additive resulted in lower net gas and CH(4) production than correction for a treatment specific blank. For instance, correcting carvacrol data using a blank without the additive resulted in negative net gas and CH(4) production (-6.5 and -1.5 ml. respectively). These biologically impossible results occurred because total gas and CH(4) production in blanks without carvacrol (46.1 and 2.1 ml, respectively) were higher than in flasks containing substrate plus carvacrol (39.7 and 0.6 ml, respectively). Results demonstrated that inclusion of rumen additives affected fermentation of OM in the substrate and the inoculum. Thus, correction of gas and CH(4) production using blanks without additives resulted in overestimation of these variables. Blanks containing the additive of interest should be included when rumen fermentation modifiers are evaluated in vitro. This paper is part of the special issue entitled: Greenhouse Gases in Animal Agriculture Finding a Balance between Food and Emissions, Guest Edited by T.A. McAllister, Section Guest Editors: K.A. Beauchemin, X. Hao, S. McGinn and Editor for Animal Feed Science and Technology, P.H. Robinson. (C) 2011 Elsevier B.V. All rights reserved.