991 resultados para Rheological behavior


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sunscreen use is the most common photoprotection alternative used by the population, and so these products should offer improved protection with broad - spectrum, UVA and UVB protection . Vegetal substances have recently been considered as resources for sunscreen formulations due to their UV spectrum absorption and antioxidant properties. The Euterpe oleracea Mart., popularly known as açai, in its che mical composition contain polyphenols compounds, such as anthocyanins and flavonoids , to which antioxidant properties have been attributed . The aim of this work was to develop O/W sunscreens emulsions con taining açai glycolic extract ( AGE) and to evaluate both their physical stability , safety and photoprotective efficacy. The safety of the extract was evaluated by in vitro phototoxicity and cytotoxicity tests. Emulsions containing AGE and sunscreens were formulated using different types and concentrations o f polymeric surfactant (Acrylates/C 10 - 30 Alkyl Acrylate Crosspolymer and Sodium Polyacrylate). The influence of two rheology modifiers (Polyacrylamide (and) C13 - 14/Isoparaffin (and) Laureth - 7 and Carbomer) on the stability was also investigated. Physical stability was evaluated by preliminary and accelerated studies. The macroscopic analyses, pH value and electrical conductivity determinations and rheological behavior were evaluated at different time intervals . The in vivo Sun Protect Factor ( SPF ) was determined according to the International Sun Protection Factor Test Method – 2006 and UVA Protection Factor (FPUVA), wavelength critical and reason SPF/FPUVA were performed according to the method Colipa 2011. The extract did not present cytotoxic ity and phototoxic ity . The stable emulsion containing 5% glycolic extract of açai and 1.0% of sodium poliyacrylate showed pseudoplastic and thixotropic behavior . The sunscreen emulsion containing açai glycolic extract showed a SPF 25.3 and PF - UVA = 14.97. Whe n açai glycolic extract was added in the emulsion sunscreen, no significant increase in the in vivo SPF and FPUVA values were observed. This emulsion showed 1.69 of the SPF/PF - UVA ratio and a critical wavelength value of 378 nm, so may therefore be conside red a sunscreen with UVA and UVB protection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Opuntia fícus - indica (L.) Mill is a cactacea presents in the Caatinga ecosystem and shows in its chemical c omposition flavonoids, galacturonic acid and sugars. Different hydroglicolic (EHG001 and EHG002) and hydroethanolic subsequently lyophilized (EHE001 and EHE002) extracts were developed. The EHE002 had his preliminary phytochemical composition investigated by thin layer chromatography (TLC) and we observed the predominance of flavonoids. Different formulations were prepared as emulsions with Sodium Polyacrylate (and) Hydrogenated Polydecene (and) Trideceth - 6 (Rapithix® A60), and Polyacrylamide (and) C13 - 14 I soparaffin (and) Laureth - 7 (Sepigel® 305), and gel with Sodium Polyacrylate (Rapithix® A100). The sensorial evaluation was conducted by check - all - that - apply method. There were no significant differences between the scores assigned to the formulations, howe ver, we noted a preference for those formulated with 1,5% of Rapithix® A100 and 3,0% of Sepigel® 305. These and the formulation with 3% Rapithix® A60 were tested for preliminary and accelerated stability. In accelerated stability study, samples were stored at different temperatures for 90 days. Organoleptic characteristics, the pH values and rheological behavior were assessed. T he emulsions formulated with 3,0% of Sepigel® 305 and 1,5% of Rapithix® A60 w ere stable with pseudoplastic and thixotropic behavior . The moisturizing clinical efficacy of the emulsions containing 3,0% of Sepigel® 305 containing 1 and 3% of EHG001 was performed using the capacitance method (Corneometer®) and transepidermal water lost – TEWL evaluation ( Tewameter®). The results showed t hat the formulation with 3% of EHG001 increased the skin moisturizing against the vehicle and the extractor solvent formulation after five hours. The formulations containing 1 and 3% of EHG001 increased skin barrier effect by reducing transepidermal water loss up to four hours after application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the synthesis and study of the application of a new surfactant (Triester Lipophilic – TEL) obtained by citric acid with octanol. It is reaction was followed by thin layer chromatography (TLC) and after purification the product was characterized by proton and 13 – carbon nuclear magnetic resonance spectroscopy ( H and 13C NMR), thermogravimetric analysis (TGA) and surface tension analysis of oil-in-water emulsions. The TEL performance as surfactant in ester, n-paraffin and biodiesel based drilling fluids on the 70/30 and 60/40 water- oil rations (WOR) was evaluated by comparative tests of two commercial products used in the fields. These drilling fluids were aged in roller oven at 200 0 F during 16 h. The rheological and electric stability measurements were carried out at 135 ºF, the phase separation was evaluated after seven days at rest and the filtrate volume of drilling fluids was determined at high temperature and high pressure. The rheological behavior of the drilling fluids was evaluated by the flow curves. The results showed that the drilling fluids studied here presented Binghamian behavior as well as the used in the oil fields. The laboratory tests showed that the TEL reduced the filtrate volume and promoted the enhance of the thermal and mechanical stabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A busca por combustíveis alternativos, tais como os biocombustíveis, torna-se necessária devido à crescente demanda por combustíveis em todos os setores da atividade humana, sendo que quase toda energia consumida no mundo provém do petróleo, uma fonte limitada, que emite grande quantidade de gases poluentes. Devido à grande diversidade de culturas oleoginosas no país, o Brasil demonstra potencial para substituição do diesel pelo biodiesel. No processo de obtenção deste, o óleo vegetal sofre uma transesterificação, sob a ação de um catalisador básico e na presença de um álcool, formando três moléculas de ésteres metílicos ou etílicos de ácidos graxos, que constituem o biodiesel em sua essência, liberando uma molécula de glicerol, que é o coproduto mais abundante desta reação. Sendo assim, a utilização do glicerol residual é uma ótima alternativa para agregar valor à cadeia produtiva do biodiesel, minimizar os danos de um possível descarte inadequado, além de diminuir os custos do processo. Com este intuito, este trabalho propõe o uso do glicerol residual como fonte de carbono para produção de exopolissacarídeos (EPSs). Para tal, foram utilizadas linhagens de bactérias mencionadas na literatura como produtoras de EPSs de importância comercial, sendo elas: Xanthomonas campestris pv. mangiferaeindicae IBSBF 1230, Pseudomonas oleovarans NRRL B-14683, Sphingomonas capsulata NRRL B-4261 e Zymomonas mobilis NRRL B-4286. Os cultivos foram realizados em meio apropriado para cada micro-organismo, e como fontes de carbono foram testadas a sacarose, o glicerol residual e uma mistura de ambos na proporção de 1:1 m/m. Os meios foram inoculados com suspensão da bactéria em estudo, sendo avaliados parâmetros relativos ao crescimento celular e à produção de EPSs. Para X. campestris pv. mangiferaeindicae, foram determinadas algumas propriedades reológicas e térmicas dos EPSs produzidos com as diferentes fontes de carbono, bem como o índice de emulsificação com diferentes óleos vegetais. X. campestris apresentou uma concentração de EPSs em torno de 4 g.L-1 em todos os meios estudados, comportamento similar ao da bactéria P. oleovorans, diferindo apenas no meio contendo sacarose (0,8 g.L-1 ). S. capsulata apresentou uma maior concentração de EPSs em meios contendo sacarose e a mistura de sacarose com glicerol residual, em torno de 3,4 g.L-1 , e em meio contendo glicerol residual este valor caiu para 1,7 g.L-1 . Já Z. mobilis apresentou um melhor resultado em meio contendo sacarose e glicerol residual, atingindo 1,3 g.L-1 , sendo que em meio contendo somente sacarose e glicerol residual estes valores foram inferiores alcançando 0,2 e 0,7 g.L-1 , respectivamente. Quase todas as bactérias atingiram a fase estacionária em 24 h de cultivo e o pH permaneceu praticamente constante, sendo verificada uma queda mais acentuada somente para Z. mobilis. O comportamento reológico foi similar para as xantanas produzidas nos diferentes meios, entretanto a viscosidade inicial foi maior com o meio a sacarose (637 cP), seguido da mistura de sacarose com glicerol residual (279 cP) e glicerol residual (60 cP). O IE24 foi superior quando utilizado o óleo de milho, atingindo valores de 97, 72 e 64 % em sacarose, mistura de sacarose com glicerol e glicerol residual, respectivamente. Desta forma, pode-se afirmar que a mudança na fonte de carbono afeta estas propriedades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the major current challenges for oilwell companies is the extraction of oil from evaporitic zones, also known as pre-salt basins. Deep reservoirs are found under thick salt layers formed from the evaporation of sea water. Salt layers seal the flow of oil from underneath rock formations, which store hydrocarbons and increase the probability of success in oil and gas exploration. Oilwells are cemented using Portland-based slurries to promote mechanical stability and zonal isolation. For pre-salt oilwells, NaCl must be added to saturate the cement slurries, however, the presence of salt in the composition of slurries affects their overall behavior. Therefore, the objective of the present study was to evaluate the effect of the addition of 5 to 25% NaCl on selected properties of Portland-based slurries. A series of tests were carried out to assess the rheological behavior, thickening time, free water and ultrassonic compressive strength. In addition, the slurries were also characterized by thermal analysis, X ray diffraction and scanning electron microscopy. The results showed that the addition of NaCl affected the thickening time of the slurries. NaCl contents up to 10% shortened the thickening time of the slurries. On the other hand, concentrations in excess of 20% not only extended the thickening time, but also reduced the strength of hardened slurries. The addition of NaCl resulted in the formation of a different crystalline phase called Friedel´s salt, where free chlorine is bonded to tricalcium aluminate

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the major challenges faced nowadays by oil companies is the exploration of pre-salt basins. Thick salt layers were formed in remote ages as a consequence of the evaporation of sea water containing high concentrations of NaCl and KCl. Deep reservoirs can be found below salt formations that prevent the outflow of oil, thus improving the success in oil prospection. The slurries used in the cement operations of salt layers must be adequate to the properties of those specific formations. At the same time, their resulting properties are highly affected by the contamination of salt in the fresh state. It is t herefore important to address the effects of the presence of salt in the cement slurries in order to assure that the well sheath is able to fulfill its main role to provide zonal isolation and mechanical stability. In this scenario, the objective of the present thesis work was to evaluate the effect of the presence of NaCl and KCl premixed with cement and 40% silica flour on the behavior of cement slurries. Their effect in the presence of CO2 was also investigated. The rheological behavior of slurries containing NaCl and KCl was evaluated along with their mechanical strength. Thermal and microstructural tests were also carried out. The results revealed that the presence of NaCl and KCl affected the pozzolanic activity of silica flour, reducing the strength of the hardened slurries containing salt. Friedel´s salt was formed as a result of the bonding between free Cl- and tricalcium aluminate. The presence of CO2 also contributed to the degradation of the slurries as a result of a process of carbonation/bicarbonataion

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection