976 resultados para Reynolds-number


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work is a numerical study of heat transfer characteristics from the bottom tip of a cylinder spinning about a vertical axis in an infinitely saturated porous medium. The problem is axisymmetric. The non-dimensionalized governing equations are solved using the SIMPLER algorithm on a staggered grid. The influence of rotational Reynolds numbers and Darcy numbers on the heat transfer for a Grashof number of 104 and Prandtl number of 7.0 is studied. It is found that for very high Darcy numbers, over a wide range of rotational Reynolds numbers, the heat transfer takes place mainly due to conduction. The convective heat transfer takes place for lower Darcy numbers and for higher rotational Reynolds numbers. Moreover, there is a rapid increase in the overall Nusselt number below a certain Darcy number with increase in the rotational Reynolds numbers. The effect of the Darcy number and the rotational Reynolds number on the heat transfer and fluid flow in the porous medium is depicted in the form of streamline and isotherm plots. The variation of the overall Nusselt number with respect to the Darcy number for various rotational Reynolds numbers is plotted. The variation of the local Nusselt number with respect to the radial coordinate at the heated tip of the vertical cylinder is plotted for various Darcy and rotational Reynolds numbers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of an eccentrically inserted catheter on the peristaltic pumping in a tube is investigated under long wavelength, low Reynolds number assumptions. The radially asymmetric deformation of the wall arising through an eccentrically inserted catheter is taken into consideration by choosing an appropriate bipolar coordinate system. The effect of the position and size of the catheter on pumping characteristics is studied. The best performance of pumping is noticed at a certain position of the catheter. The size of the catheter, when placed eccentrically, alters the pressure signature significantly inside the bolus, unlike the concentric case discussed by Lykoudis and Roos (1971). Further, the maximum pressure rise in one period of the peristaltic wave is observed to decrease with an increase in the eccentricity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peristaltic motion of two immiscible viscous incompressible fluids in a circular tube is studied in pumping and copumping ranges under long-wavelength and low-Reynolds-number assumptions. The effect of the peripheral-layer viscosity on the time-averaged flux and the mechanical efficiency is studied. The formation and growth of the trapping zone in the core and the peripheral layer are explained. It is observed that the bolus volume in the peripheral layer increases with an increase in the viscosity ratio. The limits of the time-averaged flux (Q) over bar for trapping in the core are obtained. The trapping observed in the peripheral layer decreases in size with an increase in (Q) over bar but never disappears. The development of the complete trapping of the core fluid by the peripheral-layer fluid with an increase in the time-averaged flux is demonstrated. The effect of peripheral-layer viscosity on the reflux layer is investigated. It is also observed that the reflux occurs in the entire pumping range for all viscosity ratios and it is absent in the entire range of copumping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peristaltic transport of two fluids occupying the peripheral layer and the core in an elliptic tube is, investigated in elliptic cylindrical co-ordinate system, under long wavelength and low Reynolds number approximations. The effect of peripheral-layer viscosity on the flow rate and the frictional force for a slightly elliptic tube is discussed. The limiting results for the one-fluid model are obtained for different eccentricities of the undisturbed tube cross sections with the same area. As a result of non-uniformity of the peristaltic wave, two different amplitude ratios are defined and the time-averaged flux and mechanical efficiency are studied for different eccentricities. It is observed that the time-averaged flux is not affected significantly by the pressure drop when the eccentricity is large. For the peristaltic waves with same area variation, the pumping seems to improve with the eccentricity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers the extensive data and correlations on the erosive burning of solid propellants. A relatively simple nondimensional relationship between the ratio of the actual to nonerosive burn rate (eta) and a quantity g, which is the product of g(0)-the ratio of free stream mass flux to the mass flux from the surface for nonerosive condition-and Re-0(m), where Re-0 is the Reynolds number based on the nonerosive mass flux of the propellant and port diameter, is shown to correlate most data within the accuracies of the experiments with m = -0.125. This shows the above relationship to account for the effects of pressure, aluminum, even up to a proportion of 17%, burn rate catalysts, and motor size. It is concluded that the suggested correlation between eta and g may be adopted universally for most practical propellants. (C) 1997 by The Combustion Institute.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder is investigated when both the free stream velocity and the velocity of the cylinder vary arbitrarily with time. The cylinder moves either in the same direction as that of the free stream or in the opposite direction. The flow is initially (t = 0) steady and then at t > 0 it becomes unsteady. The semi-similar solution of the unsteady Navier-Stokes equations has been obtained numerically using an implicit finite-difference scheme. Also the self-similar solution of the Navier-Stokes equations is obtained when the velocity of the cylinder and the free stream velocity vary inversely as a linear function of time. For small Reynolds number, a closed form solution is obtained. When the Reynolds number tends to infinity, the Navier-Stokes equations reduce to those of the two-dimensional stagnation-point flow. The shear stresses corresponding to stationary and the moving cylinder increase with the Reynolds number. The shear stresses increase with time for the accelerating flow but decrease with increasing time for the decelerating flow. For the decelerating case flow reversal occurs in the velocity profiles after a certain instant of time. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When the cold accretion disc coupling between neutral gas and a magnetic field is so weak that the magnetorotational instability is less effective or even stops working, it is of prime interest to investigate the pure hydrodynamic origin of turbulence and transport phenomena. As the Reynolds number increases, the relative importance of the non-linear term in the hydrodynamic equation increases. In an accretion disc where the molecular viscosity is too small, the Reynolds number is large enough for the non-linear term to have new effects. We investigate the scenario of the `weakly non-linear' evolution of the amplitude of the linear mode when the flow is bounded by two parallel walls. The unperturbed flow is similar to the plane Couette flow, but with the Coriolis force included in the hydrodynamic equation. Although there is no exponentially growing eigenmode, because of the self-interaction, the least stable eigenmode will grow in an intermediate phase. Later, this will lead to higher-order non-linearity and plausible turbulence. Although the non-linear term in the hydrodynamic equation is energy-conserving, within the weakly non-linear analysis it is possible to define a lower bound of the energy (alpha A(c)(2), where A(c) is the threshold amplitude) needed for the flow to transform to the turbulent phase. Such an unstable phase is possible only if the Reynolds number >= 10(3-4). The numerical difficulties in obtaining such a large Reynolds number might be the reason for the negative result of numerical simulations on a pure hydrodynamic Keplerian accretion disc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximate deconvolution modeling is a very recent approach to large eddy simulation of turbulent flows. It has been applied to compressible flows with success. Here, a premixed flame which forms in the wake of a flameholder has been selected to examine the subgrid-scale modeling of reaction rate by this new method because a previous plane two-dimensional simulation of this wake flame, using a wrinkling function and artificial flame thickening, had revealed discrepancies when compared with experiment. The present simulation is of the temporal evolution of a round wakelike flow at two Reynolds numbers, Re = 2000 and 10,000, based on wake defect velocity and wake diameter. A Fourier-spectral code has been used. The reaction is single-step and irreversible, and the rate follows an Arrhenius law. The reference simulation at the lower Reynolds number is fully resolved. At Re = 10,000, subgrid-scale contributions are significant. It was found that subgrid-scale modeling in the present simulation agrees more closely with unresolved subgrid-scale effects observed in experiment. Specifically, the highest contributions appeared in thin folded regions created by vortex convection. The wrinkling function approach had not selected subgrid-scale effects in these regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stability of fluid flow past a membrane of infinitesimal thickness is analysed in the limit of zero Reynolds number using linear and weakly nonlinear analyses. The system consists of two Newtonian fluids of thickness R* and H R*, separated by an infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics of the membrane is described by its normal displacement from the flat state, as well as a surface displacement field which provides the displacement of material points from their steady-state positions due to the tangential stress exerted by the fluid flow. The surface stress in the membrane (force per unit length) contains an elastic component proportional to the strain along the surface of the membrane, and a viscous component proportional to the strain rate. The linear analysis reveals that the fluctuations become unstable in the long-wave (alpha --> 0) limit when the non-dimensional strain rate in the fluid exceeds a critical value Lambda(t), and this critical value increases proportional to alpha(2) in this limit. Here, alpha is the dimensionless wavenumber of the perturbations scaled by the inverse of the fluid thickness R*(-1), and the dimensionless strain rate is given by Lambda(t) = ((gamma) over dot* R*eta*/Gamma*), where eta* is the fluid viscosity, Gamma* is the tension of the membrane and (gamma) over dot* is the strain rate in the fluid. The weakly nonlinear stability analysis shows that perturbations are supercritically stable in the alpha --> 0 limit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A group of high-order finite-difference schemes for incompressible flow was implemented to simulate the evolution of turbulent spots in channel flows. The long-time accuracy of these schemes was tested by comparing the evolution of small disturbances to a plane channel flow against the growth rate predicted by linear theory. When the perturbation is the unstable eigenfunction at a Reynolds number of 7500, the solution grows only if there are a comparatively large number of (equispaced) grid points across the channel. Fifth-order upwind biasing of convection terms is found to be worse than second-order central differencing. But, for a decaying mode at a Reynolds number of 1000, about a fourth of the points suffice to obtain the correct decay rate. We show that this is due to the comparatively high gradients in the unstable eigenfunction near the walls. So, high-wave-number dissipation of the high-order upwind biasing degrades the solution especially. But for a well-resolved calculation, the weak dissipation does not degrade solutions even over the very long times (O(100)) computed in these tests. Some new solutions of spot evolution in Couette flows with pressure gradients are presented. The approach to self-similarity at long times can be seen readily in contour plots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental investigation on reverse transition from turbulent to laminar flow in a two-dimensional channel was carried out. The reverse transition occurred when Reynolds number of an initially turbulent flow was reduced below a certain value by widening the duct in the lateral direction. The experiments were conducted at Reynolds numbers of 625, 865, 980 and 1250 based on half the height of the channel and the average of the mean velocity. At all these Reynolds numbers the initially turbulent mean velocity profiles tend to become parabolic. The longitudinal and vertical velocity fluctuations ($\overline{u^{\prime 2}}$ and $\overline{v^{\prime 2}}$) averaged over the height of the channel decrease exponentially with distance downstream, but $\overline{u^{\prime}v^{\prime}} $ tends to become zero at a reasonably well-defined point. During reverse transition $\overline{u^{\prime}}\overline{v^{\prime}}/\sqrt{\overline{u^{\prime 2}}}\sqrt{\overline{v^{\prime 2}}}$ also decreases as the flow moves downstream and Lissajous figures taken with u’ and v’ signals confirm this trend. There is approximate similarly between $\overline{u^{\prime 2}} $ profiles if the value of $\overline{u^{\prime 2}_{\max}} $ and the distance from the wall at which it occurs are taken as the reference scales. The spectrum of $\overline{u^{\prime 2}} $ is almost similar at all stations and the non-dimensional spectrum is exponential in wave-number. All the turbulent quantities, when plotted in appropriate co-ordinates, indicate that there is a definite critical Reynolds number of 1400±50 for reverse transition.