973 resultados para Reversal of Antagonists
Resumo:
PURPOSE Assessment of the cerebral blood flow (CBF) is crucial in the evaluation of patients with steno-occlusive diseases of the arteries supplying the brain for prediction of stroke risk. Quantitative phase contrast magnetic resonance angiography (PC-MRA) can be utilised for noninvasive quantification of CBF. The aim of this study was to validate in-vivo PC-MRA data by comparing them with colour-coded duplex (CCD) sonography in patients with cerebrovascular disease. METHODS AND MATERIALS We examined 24 consecutive patients (mean age 63 years) with stenosis of arteries supplying the brain using PC-MRA and CCD. Velocities were measured in a total of 209 stenotic and healthy arterial segments (110 extra- and 99 intracranial). RESULTS Moderate to good correlation of velocity measurements between both techniques was observed in all six extracranial and five out of seven intracranial segments (p <0.05). Velocities measured with CCD sonography were generally higher than those obtained by PC-MRA. Reversal of flow direction was detected consistently with both methods. CONCLUSION PC-MRA represents a robust, standardised magnetic resonance imaging technique for blood flow measurements within a reasonable acquisition time, potentially evolving as valuable work-up tool for more precise patient stratification for revascularisation therapy. PC-MRA overcomes relevant weaknesses of CCD in being not operator-dependent and not relying on a bone window to assess the intracranial arteries.
Resumo:
The hindsight bias represents the tendency of people to falsely believe that they would have predicted the outcome of an event, once the outcome is known. Two experiments will be presented that show a reduction or even reversal of the hindsight bias when the outcome information is self-threatening for the participants. Participants read a report of an interaction between a man and a woman that ended with different outcomes: The woman was raped vs. the woman was not raped vs. no outcome information was given. Results of the first experiment indicated that especially female participants, who did not accept rape myths, showed a reversed hindsight bias, when they received the rape outcome information. The more threatening the rape outcome had been, the lower was their estimated likelihood of rape. Results of the second experiment confirmed those of the first. Female participants, who did not accept rape myths and perceived themselves highly similar to the victim, showed a strong reversed hindsight bias, when threatened by the rape outcome, whereas female participants, who did believe in rape myth and were not similar to the victim, showed a classical hindsight bias. These effects were interpreted in terms of self-serving or in-group serving functions of the hindsight bias: Participants deny the foreseeability of a self-threatening outcome as a means of self-protection even if they are not personally affected by the negative information, but a member of their group.
Resumo:
The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.
Resumo:
Coronary atherosclerosis has been considered a chronic disease characterized by ongoing progression in response to systemic risk factors and local pro-atherogenic stimuli. As our understanding of the pathobiological mechanisms implicated in atherogenesis and plaque progression is evolving, effective treatment strategies have been developed that led to substantial reduction of the clinical manifestations and acute complications of coronary atherosclerotic disease. More recently, intracoronary imaging modalities have enabled detailed in vivo quantification and characterization of coronary atherosclerotic plaque, serial evaluation of atherosclerotic changes over time, and assessment of vascular responses to effective anti-atherosclerotic medications. The use of intracoronary imaging modalities has demonstrated that intensive lipid lowering can halt plaque progression and may even result in regression of coronary atheroma when the highest doses of the most potent statins are used. While current evidence indicates the feasibility of atheroma regression and of reversal of presumed high-risk plaque characteristics in response to intensive anti-atherosclerotic therapies, these changes of plaque size and composition are modest and their clinical implications remain largely elusive. Growing interest has focused on achieving more pronounced regression of coronary plaque using novel anti-atherosclerotic medications, and more importantly on elucidating ways toward clinical translation of favorable changes of plaque anatomy into more favorable clinical outcomes for our patients.
Resumo:
While many tend to think of memory systems in the brain as a single process, in reality several experiments have supported multiple dissociations of different forms of learning, such as spatial learning and response learning. In both humans and rats, the hippocampus has long been shown to be specialized in the storage of spatial and contextual memory whereas the striatum is associated with motor responses and habitual behaviors. Previous studies have examined how damage to hippocampus or striatum has affected the acquisition of either a spatial or response navigation task. However even in a very familiar environment organisms must continuously switch between place and response strategies depending upon circumstances. The current research investigates how these two brain systems interact under normal conditions to produce navigational behavior. Rats were tested using a task developed by Jacobson and colleagues (2006) in which the two types of navigation could be controlled and studied simultaneously. Rats were trained to solve a plus maze using both a spatial and a response strategy. A cue (flashing light) was employed to indicate the correct strategy on a given trial. When no light was present, the animals were rewarded for making a 90º right turn (motor response). When the light was on, the animals were rewarded for going to a specific goal location (place strategy). After learning the task, animals had a sham surgery or dorsal striatum or hippocampus damaged. In order to investigate the individual role of each brain system and evaluate whether these brain regions compete or cooperate for control over strategy, we utilized a within-animal comparisons. The configuration of the maze allowed for the comparison of behavior in individual animals before and after specific brain areas were damaged. Animals with hippocampal lesions showed selective deficits on place trials after surgery and learned the reversal of the motor response more rapidly than striatal lesioned or sham rats. Unlike previous findings regarding maze learning, animals with striatal lesions showed deficits in both place and response trials and had difficulty learning the reversal of motor response. Therefore, the effects of lesions on the ability to switch back and forth between strategies were more complex than previously suggested. This work may reveal important new insight on the integration of hippocampal and striatal learning systems, and facilitate a better understanding of the brain dynamics underlying similar navigational processes in humans.
Resumo:
Angiogenesis is a feature of chronic lung diseases such as asthma and pulmonary fibrosis; however, the pathways controlling pathological angiogenesis during lung disease are not completely understood. Adenosine is a signaling nucleoside that accumulates as a result of tissue hypoxia and damage. Adenosine has been implicated in the exacerbation of chronic lung disease and in the regulation of angiogenesis; however, the relationship between these factors has not been investigated. The work presented in this dissertation utilized adenosine deaminase (ADA)-deficient mice to determine whether chronic elevations of adenosine in vivo result in pulmonary angiogenesis, and to identify factors that could potentially mediate this process. Results demonstrate that there is substantial angiogenesis in the tracheas of ADA-deficient mice in association with adenosine elevations. Replacement enzyme therapy with pegylated ADA resulted in a lowering of adenosine levels and reversal of tracheal angiogenesis, indicating that the increases in vessel number are dependent on adenosine elevations. Levels of the ELR+ angiogenic chemokine CXCL1 were found to be elevated in an adenosine-dependent manner in the lungs of ADA-deficient mice. Neutralization of CXCL1 and its putative receptor, CXCR2, in ADA-deficient lung lysates resulted in the inhibition of angiogenic activity suggesting that CXCL1 signaling through the CXCR2 receptor is responsible for mediating the observed increases in angiogenesis. Taken together, these findings suggest that adenosine plays an important role, via CXCL1, in the induction of pulmonary angiogenesis and may therefore represent an important therapeutic target for the treatment of pathological angiogenesis. ^
Resumo:
Epigenetic silencing of tumor suppressor genes by DNA hypermethylation at promoter regions is a common event in carcinogenesis and tumor progression. Abrogation of methylation and reversal of epigenetic silencing is a very potent way in cancer treatment. However, the reactivation mechanisms are poorly understood. In this study, we first developed a cell line model system named YB5, derived from SW48 cancer cell line, which bears one copy of stably integrated EGFP gene on Chromosome 1p31.1 region. The GFP gene expression is transcriptionally silenced due to the hypermethylated promoter CMV. However, the GFP expression can be restored using demethylating agent 5-aza-2' deoxycytidine (DAC), and detected by FACS and fluorescent microscopy. Using this system, we observed the heterogeneous reactivation induced by DAC treatment. After flow sorting, GFP negative cells exhibited similar level of incomplete demethylation compared to GFP positive cells on repetitive LINE1 element, tumor suppressor genes such as P16, CDH13, and RASSF1a, and CMV promoter as well. However, the local chromatin of CMV-GFP locus altered to an open structure marked by high H3 lysine 9 acetylation and low H3 lysine 27 tri-methylation in GFP positive cells, while the GFP negative cells retained mostly the original repressive marks. Thus, we concluded that DAC induced DNA hypomethylation alone does not directly determine the level of re-expression, and the resetting of the local chromatin structure under hypomethylation environment is required for gene reactivation. Besides, a lentivirus vector-based shRNA screening was performed using the YB5 system. Although it is the rare chance that vector lands in the neighboring region of GFP, we found that the exogenous vector DNA inserted into the upstream region of GFP gene locus led to the promoter demethylation and reactivated the silenced GFP gene. Thus, epigenetic state can be affected by changing of the adjacent nucleic acid sequences. Further, this hypermethylation silenced system was utilized for epigenetic drug screening. We have found that DAC combined with carboplatin would enhance the GFP% yield and increase expression of other tumor suppressor genes than DAC alone, and this synergistic effect may be related to DNA repair process. In summary, these studies reveal that reversing of methylation silencing requires coordinated alterations of DNA methylation, chromatin structure, and local microenvironment. ^
Resumo:
Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^
Resumo:
Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.
Resumo:
Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.
Resumo:
Bulk sediment chemistry from three Chilean continental margin Ocean Drilling Program sites constrains regional continental erosion over the past 30,000 years. Sediments from thirteen rivers that drain the (mostly igneous) Andes and the (mostly metamorphic) Coast Range, along with existing rock chemistry datasets, define terrestrial provenance for the continental margin sediments. Andean river sediments have high Mg/Al relative to Coast-Range river sediments. Near 36°S, marine sediments have high-Mg/Al (i.e. more Andean) sources during the last glacial period, and lower-Mg/Al (less Andean) sources during the Holocene. Near 41°S a Ti-rich source, likely from coast-range igneous intrusions, is prevalent during Holocene time, whereas high-Mg/Al Andean sources are more prevalent during the last glacial period. We infer that there is a dominant ice-sheet control of sediment sources. At 36°S, Andean-sourced sediment decreased as Andean mountain glaciers retreated after ~17.6 ka, coincident with local oceanic warming and southward retreat of the Patagonian Forest and, by inference, westerly winds. At 41°S Andean sediment dominance peaks and then rapidly declines at ~19 ka, coincident with local oceanic warming and the earliest deglacial sea-level rise. We hypothesize that this decreased flux of Andean material in the south is related to rapid retreat of the marine-based portion of the Patagonian Ice Sheet in response to global sea-level rise, as the resulting flooding of the southern portion of the Central Valley created a sink for Andean sediments in this region. Reversal of the decreasing deglacial Mg/Al trend at 41°S from 14.5 to 13.0 ka is consistent with a brief re-advance of the Patagonian ice sheet coincident with the Antarctic Cold Reversal.
Resumo:
Organic matter in Miocene glacial sediments in Hole 739C on the Antarctic Shelf represents erosional recycled continental material. Various indications of maturity in bulk organic matter, kerogens, and extracts imply that an exposed section of mature organic carbon-rich material was present during the Miocene. Based on biomarker, n-alkane, and kerogen analysis, a massive diamictite of early Eocene/Oligocene age at Hole 739C contains immature organic matter. Visual and pyrolysis analyses of the kerogens suggest a predominance of terrestrial organic matter in all samples from Hole 739C. A reversal of thermal maturities, i.e., more-mature overlying less-mature sections, may be related to redeposition generated from glacial erosion. Siliciclastic fluviatile sediments of Lower Cretaceous age from Hole 741A were analyzed. The organic matter from this hole contains immature aliphatic and aromatic biomarkers as well as a suite of odd carbon number-dominated nalkanes. Visual examination and pyrolysis analysis of the kerogen suggests that predominantly immature terrestrial organic matter is present at Hole 741A. The similarities between Hole 739C Unit V and Hole 741A suggest that the source of the organic matter in the glacial sediments in Unit V at Hole 739C could be Cretaceous in age and similar to sediments sampled at Hole 741A in Prydz Bay.
Resumo:
North Atlantic climate variations are reflected in sedimentary records from the northern Indian Ocean in which two basins, the Arabian Sea and the Bay of Bengal, are strongly affected by the monsoon. Contrary to the Bay of Bengal the Arabian Sea plays an important role in the global marine nitrogen cycle. In its mid-water oxygen minimum zone (OMZ) bioavailable fixed nitrogen is reduced to nitrogen gas (NO3- - > N2), whereas oxygen concentrations are slightly above the threshold of nitrate reduction in the OMZ of the Bay of Bengal. A coral colony (Porites lutea) growing south of Port Blair on the Andaman Islands in the Bay of Bengal was studied for its response to changes in the monsoon system and its link to temperature changes in the North Atlantic Ocean, between 1975 and 2006. Its linear extension rates, d13C and d18O values measured within the coral skeleton reveal a strong seasonality, which seems to be caused by the monsoon-driven reversal of the surface ocean circulation. The sampling site appears to be influenced by low salinity Bay of Bengal Water during the NE monsoon (boreal winter) and by the high salinity Arabian Sea Water during the SW monsoon in summer. The high salinity Arabian Sea Water circulates along with the Summer Monsoon Current (S-MC) from the Arabia Sea into the Bay of Bengal. Decreasing d18O and reconstructed salinity values correlate to the increasing SSTs in the North Atlantic Ocean indicating a reduced influence of the S-MC at the sampling site in the course of northern hemispheric warming. During such periods oxygen-depletion became stronger in the OMZ of the Arabian Sea as indicated by the sedimentary records. A reduced propagation of oxygen-depleted high salinity Arabian Sea Water into the Bay of Bengal could be a mechanism maintaining oxygen concentration above the threshold of nitrate reduction in the OMZ of the Bay of Bengal in times of global warming.
Resumo:
Introduction:Today, many countries, regardless of developed or developing, are trying to promote decentralization. According to Manor, as his quoting of Nickson’s argument, decentralization stems from the necessity to strengthen local governments as proxy of civil society to fill the yawning gap between the state and civil society (Manor [1999]: 30). With the end to the Cold War following the collapse of the Soviet Union rendering the cause of the “leadership of the central government to counter communism” meaningless, Manor points out, it has become increasingly difficult to respond flexibly to changes in society under the centralized system. Then, what benefits can be expected from the effectuation of decentralization? Litvack-Ahmad-Bird cited the four points: attainment of allocative efficiency in the face of different local preferences for local public goods; improvement to government competitiveness; realization of good governance; and enhancement of the legitimacy and sustainability of heterogeneous national states (Litvack, Ahmad & Bird [1998]: 5). They all contribute to reducing the economic and social costs of a central government unable to respond to changes in society and enhancing the efficiency of state administration through the delegation of authority to local governments. Why did Indonesia have a go at decentralization? As Maryanov recognizes, reasons for the implementation of decentralization in Indonesia have never been explicitly presented (Maryanov [1958]: 17). But there was strong momentum toward building a democratic state in Indonesia at the time of independence, and as indicated by provisions of Article 18 of the 1945 Constitution, there was the tendency in Indonesia from the beginning to debate decentralization in association with democratization. That said debate about democratization was fairly abstract and the main points are to ease the tensions, quiet the complaints, satisfy the political forces and thus stabilize the process of government (Maryanov [1958]: 26-27). What triggered decentralization in Indonesia in earnest, of course, was the collapse of the Soeharto regime in May 1998. The Soeharto regime, regarded as the epitome of the centralization of power, became incapable of effectively dealing with problems in administration of the state and development administration. Besides, the post-Soeharto era of “reform (reformasi)” demanded the complete wipeout of the Soeharto image. In contraposition to the centralization of power was decentralization. The Soeharto regime that ruled Indonesia for 32 years was established in 1966 under the banner of “anti-communism.” The end of the Cold War structure in the late 1980s undermined the legitimate reason the centralization of power to counter communism claimed by the Soeharto regime. The factor for decentralization cited by Manor is applicable here. Decentralization can be interpreted to mean not only the reversal of the centralized system of government due to its inability to respond to changes in society, as Manor points out, but also the participation of local governments in the process of the nation state building through the more positive transfer of power (democratic decentralization) and in the coordinated pursuit with the central government for a new shape of the state. However, it is also true that a variety of problems are gushing out in the process of implementing decentralization in Indonesia. This paper discusses the relationship between decentralization and the formation of the nation state with the awareness of the problems and issues described above. Section 1 retraces the history of decentralization by examining laws and regulations for local administration and how they were actually implemented or not. Section 2 focuses on the relationships among the central government, local governments, foreign companies and other actors in the play over the distribution of profits from exploitation of natural resources, and examines the process of the ulterior motives of these actors and the amplification of mistrust spawning intense conflicts that, in extreme cases, grew into separation and independence movements. Section 3 considers the merits and demerits at this stage of decentralization implemented since 2001 and shed light on the significance of decentralization in terms of the nation state building. Finally, Section 4 attempts to review decentralization as the “opportunity to learn by doing” for the central and local governments in the process of the nation state building. In the context of decentralization in Indonesia, deconcentration (dekonsentrasi), decentralization (desentralisasi) and support assignments (tugas pembantuan; medebewind, a Dutch word, was used previously) are defined as follows. Dekonsentrasi means that when the central government puts a local office of its own, or an outpost agency, in charge of implementing its service without delegating the administrative authority over this particular service. The outpost agency carries out the services as instructed by the central government. A head of a local government, when acting for the central government, gets involved in the process of dekonsentrasi. Desentralisasi, meanwhile, occurs when the central government cedes the administrative authority over a particular service to local governments. Under desentralisasi, local governments can undertake the particular service at their own discretion, and the central government, after the delegation of authority, cannot interfere with how local governments handle that service. Tugas pembantuan occur when the central government makes local governments or villages, or local governments make villages, undertake a particular service. In this case, the central government, or local governments, provides funding, equipment and materials necessary, and officials of local governments and villages undertake the service under the supervision and guidance of the central or local governments. Tugas pembantuan are maintained until local governments and villages become capable of undertaking that particular service on their own.
Resumo:
Green innovation, which enables us to extract energy from food crops, caused a food shortage in 2008. Countries suffering severe damage started to reconsider their agricultural policy with the aim of becoming more autonomous. The food price hike of the time looks like a reversal of the celebrated Singer-Prebisch thesis proposed in the 1950s. This paper examines the consequences of this trend on the comparative advantages and development strategies of developing countries. For that purpose, first, trends and short-run fluctuations in the prices of fuel and bio-energy crops are investigated. It is shown that the price series of fuels and the crops are synchronized only after the fuel extracting technology came into effect. Second, the reversal of the Singer-Prebisch thesis is underpinned by the generic form of an endogenous growth model developed by Rebelo (1991). It is shown that as an economy grows, appreciation of the non-reproducible, such as mineral resources and raw labor, over the reproducible, such as capital goods, is the norm rather than an anomaly. Third, the consequences of the food price hike and underlying capital accumulation on the development strategies of labor-abundant and low-income countries are explored. It is concluded that the impact of the food price hikes on the alteration of a development strategy is only incremental, without reinforcement from raw-labor-saving innovation. A case study of inventions by JUKI Corporation, a world-leader in the sewing machine market exemplifies the fact that, of all the major inventions the company have made, raw-labor-saving inventions have not dominated, although JUKI's machines are sold to one of the most raw-labor-intensive industries.