187 resultados para Retrial queue
Resumo:
The estimation of P(S-n > u) by simulation, where S, is the sum of independent. identically distributed random varibles Y-1,..., Y-n, is of importance in many applications. We propose two simulation estimators based upon the identity P(S-n > u) = nP(S, > u, M-n = Y-n), where M-n = max(Y-1,..., Y-n). One estimator uses importance sampling (for Y-n only), and the other uses conditional Monte Carlo conditioning upon Y1,..., Yn-1. Properties of the relative error of the estimators are derived and a numerical study given in terms of the M/G/1 queue in which n is replaced by an independent geometric random variable N. The conclusion is that the new estimators compare extremely favorably with previous ones. In particular, the conditional Monte Carlo estimator is the first heavy-tailed example of an estimator with bounded relative error. Further improvements are obtained in the random-N case, by incorporating control variates and stratification techniques into the new estimation procedures.
Resumo:
Queueing theory is an effective tool in the analysis of canputer camrunication systems. Many results in queueing analysis have teen derived in the form of Laplace and z-transform expressions. Accurate inversion of these transforms is very important in the study of computer systems, but the inversion is very often difficult. In this thesis, methods for solving some of these queueing problems, by use of digital signal processing techniques, are presented. The z-transform of the queue length distribution for the Mj GY jl system is derived. Two numerical methods for the inversion of the transfom, together with the standard numerical technique for solving transforms with multiple queue-state dependence, are presented. Bilinear and Poisson transform sequences are presented as useful ways of representing continuous-time functions in numerical computations.
Resumo:
A local area network that can support both voice and data packets offers economic advantages due to the use of only a single network for both types of traffic, greater flexibility to changing user demands, and it also enables efficient use to be made of the transmission capacity. The latter aspect is very important in local broadcast networks where the capacity is a scarce resource, for example mobile radio. This research has examined two types of local broadcast network, these being the Ethernet-type bus local area network and a mobile radio network with a central base station. With such contention networks, medium access control (MAC) protocols are required to gain access to the channel. MAC protocols must provide efficient scheduling on the channel between the distributed population of stations who want to transmit. No access scheme can exceed the performance of a single server queue, due to the spatial distribution of the stations. Stations cannot in general form a queue without using part of the channel capacity to exchange protocol information. In this research, several medium access protocols have been examined and developed in order to increase the channel throughput compared to existing protocols. However, the established performance measures of average packet time delay and throughput cannot adequately characterise protocol performance for packet voice. Rather, the percentage of bits delivered within a given time bound becomes the relevant performance measure. Performance evaluation of the protocols has been examined using discrete event simulation and in some cases also by mathematical modelling. All the protocols use either implicit or explicit reservation schemes, with their efficiency dependent on the fact that many voice packets are generated periodically within a talkspurt. Two of the protocols are based on the existing 'Reservation Virtual Time CSMA/CD' protocol, which forms a distributed queue through implicit reservations. This protocol has been improved firstly by utilising two channels, a packet transmission channel and a packet contention channel. Packet contention is then performed in parallel with a packet transmission to increase throughput. The second protocol uses variable length packets to reduce the contention time between transmissions on a single channel. A third protocol developed, is based on contention for explicit reservations. Once a station has achieved a reservation, it maintains this effective queue position for the remainder of the talkspurt and transmits after it has sensed the transmission from the preceeding station within the queue. In the mobile radio environment, adaptions to the protocols were necessary in order that their operation was robust to signal fading. This was achieved through centralised control at a base station, unlike the local area network versions where the control was distributed at the stations. The results show an improvement in throughput compared to some previous protocols. Further work includes subjective testing to validate the protocols' effectiveness.
Resumo:
IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows. © 2012 KSI.
Resumo:
We consider data losses in a single node of a packet- switched Internet-like network. We employ two distinct models, one with discrete and the other with continuous one-dimensional random walks, representing the state of a queue in a router. Both models have a built-in critical behavior with a sharp transition from exponentially small to finite losses. It turns out that the finite capacity of a buffer and the packet-dropping procedure give rise to specific boundary conditions which lead to strong loss rate fluctuations at the critical point even in the absence of such fluctuations in the data arrival process.
Resumo:
Class-based service differentiation is provided in DiffServ networks. However, this differentiation will be disordered under dynamic traffic loads due to the fixed weighted scheduling. An adaptive weighted scheduling scheme is proposed in this paper to achieve fair bandwidth allocation among different service classes. In this scheme, the number of active flows and the subscribed bandwidth are estimated based on the measurement of local queue metrics, then the scheduling weights of each service class are adjusted for the per-flow fairness of excess bandwidth allocation. This adaptive scheme can be combined with any weighted scheduling algorithm. Simulation results show that, comparing with fixed weighted scheduling, it effectively improve the fairness of excess bandwidth allocation.
Resumo:
现有区分服务网络的保证转发服务可提供稳定的带宽保证,但缺乏保证时延和分组丢失性能的有效方案.基于对RIO队列的稳态性能分析,提出两种自适应调整控制策略的主动队列管理算法(ARIO-D和ARIO-L).仿真结果表明,这两种算法在保持RIO算法带宽保证能力的同时,还可以提供稳定的和可区分的时延和分组丢失性能.采用ARIO-D和ARIO-L的保证转发服务可以为多媒体流量提供多种服务质量的定量保证. Current assured forwarding (AF) service in differentiated services (DiffServ) networks can provide stable guarantees in throughput, but is lacking of efficient schemes in ensuring queuing delay and loss ratio. By analyzing the steady state operating point of RIO, this paper proposes two active queue management algorithms with adaptive control policy, namely ARIO-D and ARIO-L. These two algorithms can provide differentiated performance in, respectively, queuing delay and loss ratio, in addition to throughput guarantee. By deploying ARIO-D and ARIO-L, AF service can provide quantitative guarantees for multimedia traffic with multiple QoS metrics.
Resumo:
This paper represents VoIP shaping analyses in devices that apply the three Quality of Service techniques – IntServ, DiffServ and RSVP. The results show queue management and packet stream shaping based on simulation of the three mostly demanded services – VoIP, LAN emulation and transaction exchange. Special attention is paid to the VoIP as the most demanding service for real time communication.
Resumo:
It is unquestioned that the importance of IP network will further increase and that it will serve as a platform for more and more services, requiring different types and degrees of service quality. Modern architectures and protocols are being standardized, which aims at guaranteeing the quality of service delivered to users. In this paper, we investigate the queueing behaviour found in IP output buffers. This queueing increases because multiple streams of packets with different length are being multiplexed together. We develop balance equations for the state of the system, from which we derive packet loss and delay results. To analyze these types of behaviour, we study the discrete-time version of the “classical” queue model M/M/1/k called Geo/Gx/1/k, where Gx denotes a different packet length distribution defined on a range between a minimum and maximum value.
Resumo:
This work was supported by the Bulgarian National Science Fund under grant BY-TH-105/2005.
Resumo:
A class of priority systems with non-zero switching times, referred as generalized priority systems, is considered. Analytical results regarding the distribution of busy periods, queue lengths and various auxiliary characteristics are presented. These results can be viewed as generalizations of the Kendall functional equation and the Pollaczek-Khintchin transform equation, respectively. Numerical algorithms for systems’ busy periods and traffic coefficients are developed. ACM Computing Classification System (1998): 60K25.
Resumo:
Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients’ department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages.
Resumo:
Traffic incidents are a major source of traffic congestion on freeways. Freeway traffic diversion using pre-planned alternate routes has been used as a strategy to reduce traffic delays due to major traffic incidents. However, it is not always beneficial to divert traffic when an incident occurs. Route diversion may adversely impact traffic on the alternate routes and may not result in an overall benefit. This dissertation research attempts to apply Artificial Neural Network (ANN) and Support Vector Regression (SVR) techniques to predict the percent of delay reduction from route diversion to help determine whether traffic should be diverted under given conditions. The DYNASMART-P mesoscopic traffic simulation model was applied to generate simulated data that were used to develop the ANN and SVR models. A sample network that comes with the DYNASMART-P package was used as the base simulation network. A combination of different levels of incident duration, capacity lost, percent of drivers diverted, VMS (variable message sign) messaging duration, and network congestion was simulated to represent different incident scenarios. The resulting percent of delay reduction, average speed, and queue length from each scenario were extracted from the simulation output. The ANN and SVR models were then calibrated for percent of delay reduction as a function of all of the simulated input and output variables. The results show that both the calibrated ANN and SVR models, when applied to the same location used to generate the calibration data, were able to predict delay reduction with a relatively high accuracy in terms of mean square error (MSE) and regression correlation. It was also found that the performance of the ANN model was superior to that of the SVR model. Likewise, when the models were applied to a new location, only the ANN model could produce comparatively good delay reduction predictions under high network congestion level.
Resumo:
This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^
Resumo:
Buffered crossbar switches have recently attracted considerable attention as the next generation of high speed interconnects. They are a special type of crossbar switches with an exclusive buffer at each crosspoint of the crossbar. They demonstrate unique advantages over traditional unbuffered crossbar switches, such as high throughput, low latency, and asynchronous packet scheduling. However, since crosspoint buffers are expensive on-chip memories, it is desired that each crosspoint has only a small buffer. This dissertation proposes a series of practical algorithms and techniques for efficient packet scheduling for buffered crossbar switches. To reduce the hardware cost of such switches and make them scalable, we considered partially buffered crossbars, whose crosspoint buffers can be of an arbitrarily small size. Firstly, we introduced a hybrid scheme called Packet-mode Asynchronous Scheduling Algorithm (PASA) to schedule best effort traffic. PASA combines the features of both distributed and centralized scheduling algorithms and can directly handle variable length packets without Segmentation And Reassembly (SAR). We showed by theoretical analysis that it achieves 100% throughput for any admissible traffic in a crossbar with a speedup of two. Moreover, outputs in PASA have a large probability to avoid the more time-consuming centralized scheduling process, and thus make fast scheduling decisions. Secondly, we proposed the Fair Asynchronous Segment Scheduling (FASS) algorithm to handle guaranteed performance traffic with explicit flow rates. FASS reduces the crosspoint buffer size by dividing packets into shorter segments before transmission. It also provides tight constant performance guarantees by emulating the ideal Generalized Processor Sharing (GPS) model. Furthermore, FASS requires no speedup for the crossbar, lowering the hardware cost and improving the switch capacity. Thirdly, we presented a bandwidth allocation scheme called Queue Length Proportional (QLP) to apply FASS to best effort traffic. QLP dynamically obtains a feasible bandwidth allocation matrix based on the queue length information, and thus assists the crossbar switch to be more work-conserving. The feasibility and stability of QLP were proved, no matter whether the traffic distribution is uniform or non-uniform. Hence, based on bandwidth allocation of QLP, FASS can also achieve 100% throughput for best effort traffic in a crossbar without speedup.