894 resultados para Retinal Artery-occlusion
Resumo:
Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 μm) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation.
Resumo:
Erythropoietin (EPO) promotes neuronal survival after hypoxia and other metabolic insults by largely unknown mechanisms. Apoptosis and necrosis have been proposed as mechanisms of cellular demise, and either could be the target of actions of EPO. This study evaluates whether antiapoptotic mechanisms can account for the neuroprotective actions of EPO. Systemic administration of EPO (5,000 units/kg of body weight, i.p.) after middle-cerebral artery occlusion in rats dramatically reduces the volume of infarction 24 h later, in concert with an almost complete reduction in the number of terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling of neurons within the ischemic penumbra. In both pure and mixed neuronal cultures, EPO (0.1–10 units/ml) also inhibits apoptosis induced by serum deprivation or kainic acid exposure. Protection requires pretreatment, consistent with the induction of a gene expression program, and is sustained for 3 days without the continued presence of EPO. EPO (0.3 units/ml) also protects hippocampal neurons against hypoxia-induced neuronal death through activation of extracellular signal-regulated kinases and protein kinase Akt-1/protein kinase B. The action of EPO is not limited to directly promoting cell survival, as EPO is trophic but not mitogenic in cultured neuronal cells. These data suggest that inhibition of neuronal apoptosis underlies short latency protective effects of EPO after cerebral ischemia and other brain injuries. The neurotrophic actions suggest there may be longer-latency effects as well. Evaluation of EPO, a compound established as clinically safe, as neuroprotective therapy in acute brain injury is further supported.
Resumo:
Fibroblast growth factor-2 (FGF-2) promotes proliferation of neuroprogenitor cells in culture and is up-regulated within brain after injury. Using mice genetically deficient in FGF-2 (FGF-2−/− mice), we addressed the importance of endogenously generated FGF-2 on neurogenesis within the hippocampus, a structure involved in spatial, declarative, and contextual memory, after seizures or ischemic injury. BrdUrd incorporation was used to mark dividing neuroprogenitor cells and NeuN expression to monitor their differentiation into neurons. In the wild-type strain, hippocampal FGF-2 increased after either kainic acid injection or middle cerebral artery occlusion, and the numbers of BrdUrd/NeuN-positive cells significantly increased on days 9 and 16 as compared with the controls. In FGF-2−/− mice, BrdUrd labeling was attenuated after kainic acid or middle cerebral artery occlusion, as was the number of neural cells colabeled with both BrdUrd and NeuN. After FGF-2−/− mice were injected intraventricularly with a herpes simplex virus-1 amplicon vector carrying FGF-2 gene, the number of BrdUrd-labeled cells increased significantly to values equivalent to wild-type littermates after kainate seizures. These results indicate that endogenously synthesized FGF-2 is necessary and sufficient to stimulate proliferation and differentiation of neuroprogenitor cells in the adult hippocampus after brain insult.
Resumo:
Focal brain ischemia is the most common event leading to stroke in humans. To understand the molecular mechanisms associated with brain ischemia, we applied the technique of mRNA differential display and isolated a gene that encodes a recently discovered peptide, adrenomedullin (AM), which is a member of the calcitonin gene-related peptide (CGRP) family. Using the rat focal stroke model of middle cerebral artery occlusion (MCAO), we determined that AM mRNA expression was significantly increased in the ischemic cortex up to 17.4-fold at 3 h post-MCAO (P < 0.05) and 21.7-fold at 6 h post-MCAO (P < 0.05) and remained elevated for up to 15 days (9.6-fold increase; P < 0.05). Immunohistochemical studies localized AM to ischemic neuronal processes, and radioligand (125I-labeled CGRP) displacement revealed high-affinity (IC50 = 80.3 nmol) binding of AM to CGRP receptors in brain cortex. The cerebrovascular function of AM was studied using synthetic AM microinjected onto rat pial vessels using a cranial window or applied to canine basilar arteries in vitro. AM, applied abluminally, produced dose-dependent relaxation of preconstricted pial vessels (P < 0.05). Intracerebroventricular (but not systemic) AM administration at a high dose (8 nmol), prior to and after MCAO, increased the degree of focal ischemic injury (P < 0.05). The ischemia-induced expression of both AM mRNA and peptide in ischemic cortical neurons, the demonstration of the direct vasodilating effects of the peptide on cerebral vessels, and the ability of AM to exacerbate ischemic brain damage suggests that AM plays a significant role in focal ischemic brain injury.
Resumo:
Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.
Resumo:
Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. SIGNIFICANCE STATEMENT The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. We assessed whether microglial cells preserve neurovascular integrity after neonatal stroke. In neonatal rats, microglial depletion or pharmacological inhibition of TGFbr2/ALK5 signaling in microglia triggered hemorrhages in injured regions. The effect was not associated with additional changes in expression or intracellular redistribution of several tight junction proteins or collagen IV degradation induced by stroke. Consistent with observations in neonatal rats, microglial depletion in neonatal mice exacerbated stroke injury and induced hemorrhages. The effects were independent of infiltration of monocytes into injured regions. Thus, microglia protect neonatal brain from ischemia-induced hemorrhages, and this effect is consistent across two species.
Resumo:
Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase ( eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide ( NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral ( U) or bilateral ( B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor ( EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance ( RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 mu M furosemide. Autoregulation was enhanced by N-omega-nitro-L-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.
Resumo:
Objective: To investigate the effects of recombinant human activated protein C (rhAPC) on pulmonary function in acute lung injury (ALI) resulting from smoke inhalation in association with a bacterial challenge. Design: Prospective, randomized, controlled, experimental animal study with repeated measurements. Setting: Investigational intensive care unit at a university hospital. Subjects: Eighteen sheep (37.2 +/- 1.0 kg) were operatively prepared and randomly allocated to either the sham, control, or rhAPC group (n = 6 each). After a tracheotomy had been performed, ALI was produced in the control and rhAPC group by insufflation of 4 sets of 12 breaths of cotton smoke. Then, a 30 mL suspension of live Pseudomonas aeruginosa bacteria (containing 2-5 x 10(11) colony forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle, i.e., 4 sets of 12 breaths of room air and instillation of 30 mL normal saline. The sheep were studied in the awake state for 24 hrs and were ventilated with 100% oxygen. RhAPC (24 mu g/kg/hr) was intravenously administered. The infusion was initiated 1 hr post-injury and lasted until the end of the experiment. The animals were resuscitated with Ringer's lactate solution to maintain constant pulmonary artery occlusion pressure. Measurements and Main Results., In comparison with nontreatment in controls, the infusion of rhAPC significantly attenuated the fall in PaO2/FiO(2) ratio (control group values were 521 +/- 22 at baseline [BL], 72 +/- 5 at 12 hrs, and 74 +/- 7 at 24 hrs, vs. rhAPC group values of 541 +/- 12 at BL, 151 +/- 29 at 12 hours [p < .05 vs. control], and 118 +/- 20 at 24 hrs), and significantly reduced the increase in pulmonary microvascular shunt fraction (Qs/Qt; control group at BL, 0.14 +/- 0.02, and at 24 hrs, 0.65 +/- 0.08; rhAPC group at BL, 0.24 +/- 0.04, and at 24 hrs, 0.45 +/- 0.02 [p < .05 vs. control]) and the increase in peak airway pressure (mbar; control group at BL, 20 +/- 1, and at 24 hrs, 36 +/- 4; rhAPC group at BL, 21 +/- 1, and at 24 hrs, 28 +/- 2 [p < .05 vs. control]). In addition, rhAPC limited the increase in lung 3-nitrotyrosine (after 24 hrs [%]: sham, 7 +/- 2; control, 17 +/- 1; rhAPC, 12 +/- 1 [p < .05 vs. control]), a reliable indicator of tissue injury. However, rhAPC failed to prevent lung edema formation. RhAPC-treated sheep showed no difference in activated clotting time or platelet count but exhibited less fibrin degradation products (1/6 animals) than did controls (4/6 animals). Conclusions. Recombinant human activated protein C attenuated ALI after smoke inhalation and bacterial challenge in sheep, without bleeding complications.
Resumo:
Administration of human recombinant erythropoietin ( EPO) at time of acute ischemic renal injury ( IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa ( DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats ( N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation ( T0), or post-treated ( 6 h after the onset of reperfusion, T6) with EPO ( 5000 IU/kg), DPO ( 25 mu g/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.08 +/- 0.03mmol/l vs EPO-IRI 0.04 +/- 0.01mmol/l, P = 0.01). Delayed administration of DPO or EPO ( T6) also significantly abrogated subsequent renal dysfunction ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.06 +/- 0.01mmol/l vs EPO-IRI 0.03 +/- 0.03mmol/l, P = 0.01). There was also significantly decreased tissue injury ( apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.
Resumo:
Background. To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state. Methods The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N=22, mean spherical equivalent (MSE) =-5.00D), low myopes (N=22, MSE-1.00 to-4.50D) and emmetropes (N=22, MSE±0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured. Results. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p<0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p=0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p=0.014, p=0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p=0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p=0.016, p=0.036). MSE and AL correlated negatively with OBFa (p=0.03, p=0.003), OBF volume (p=0.02, p<0.001), POBF (p=0.01, p<0.001) and positively with CRA RI (p=0.007, p=0.05). Conclusion. High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.
Resumo:
PURPOSE: To evaluate the relationship between ocular perfusion pressure and color Doppler measurements in patients with glaucoma. MATERIALS AND METHODS: Twenty patients with primary open-angle glaucoma with visual field deterioration in spite of an intraocular pressure lowered below 21 mm Hg, 20 age-matched patients with glaucoma with stable visual fields, and 20 age-matched healthy controls were recruited. After a 20-minute rest in a supine position, intraocular pressure and color Doppler measurements parameters of the ophthalmic artery and the central retinal artery were obtained. Correlations between mean ocular perfusion pressure and color Doppler measurements parameters were determined. RESULTS: Patients with glaucoma showed a higher intraocular pressure (P <.0008) and a lower mean ocular perfusion pressure (P <.0045) compared with healthy subjects. Patients with deteriorating glaucoma showed a lower mean blood pressure (P =.033) and a lower end diastolic velocity in the central retinal artery (P =.0093) compared with normals. Mean ocular perfusion pressure correlated positively with end diastolic velocity in the ophthalmic artery (R = 0.66, P =.002) and central retinal artery (R = 0.74, P <.0001) and negatively with resistivity index in the ophthalmic artery (R = -0.70, P =.001) and central retinal artery (R = -0.62, P =.003) in patients with deteriorating glaucoma. Such correlations did not occur in patients with glaucoma with stable visual fields or in normal subjects. The correlations were statistically significantly different between the study groups (parallelism of regression lines in an analysis of covariance model) for end diastolic velocity (P =.001) and resistivity index (P =.0001) in the ophthalmic artery, as well as for end diastolic velocity (P =.0009) and resistivity index (P =. 001) in the central retinal artery. CONCLUSIONS: The present findings suggest that alterations in ocular blood flow regulation may contribute to the progression in glaucomatous damage.
Resumo:
The important role played by vascular factors in the pathogenesis of neurodegenerative disease has been increasingly realised over recent years. The nature and impact of ocular and systemic vascular dysfunction in the pathogenesis of comparable neurodegenerative diseases such as glaucoma and Alzheimer’s disease (AD) has however never been fully explored. The aim of this thesis was therefore to investigate the presence of macro- and micro-vascular alterations in both glaucoma and AD and to explore the relationships between these two chronic, slowly progressive neurodegenerative diseases. The principle sections and findings of this work were: 1. Is the eye a window to the brain? Retinal vascular dysfunction in Alzheimer’s disease · Mild newly diagnosed AD patients demonstrated ocular vascular dysfunction, in the form of an altered retinal vascular response to flicker light, which correlated with their degree of cognitive impairment. 2. Ocular and systemic vascular abnormalities in newly diagnosed normal tension glaucoma (NTG) patients · NTG patients demonstrated an altered retinal arterial constriction response to flicker light along with an increased systemic arterial stiffness and carotid artery intima-media thickness (IMT). These findings were not replicated by healthy age matched controls. 3. Ocular vascular dysregulation in AD compares to both POAG and NTG · AD patients demonstrated altered retinal arterial reactivity to flicker light which was comparable to that of POAG patients and altered baseline venous reactivity which was comparable to that of NTG patients. Neither alteration was replicated by healthy controls. 4. POAG and NTG: two separate diseases or one continuous entity? The vascular perspective · POAG and NTG patients demonstrated comparable alterations in nocturnal systolic blood pressure (SBP) variability, ocular perfusion pressure, retinal vascular reactivity, systemic arterial stiffness and carotid IMT. · Nocturnal SBP variability was found to correlate with both retinal artery baseline diameter fluctuation and carotid IMT across the glaucoma groups.
Resumo:
Purpose To investigate ocular and systemic correlates of endothelial function in the normoglycaemic offspring of Type 2 Diabetics (T2DM). Methods Healthy participants aged between 25-65 with (n=30) and without (n=39) a family history were recruited. Retinal vessel reactivity was assessed by using the Retinal Vessel Analyser (RVA, Imedos GmBH). In addition, systemic endothelial function was assessed by using the flow mediated dilation (FMD) technique. Results Parametric testing showed no significant differences in anthropometric, blood assay or ocular and systemic function between both groups (p>0.05). The average maximum dilation in the measured retinal artery correlated significantly with the maximum dilation of the measured brachial artery (p=0.002 R=0.55) in healthy controls; however, this was not true for subjects with family history of T2DM. Conclusion Subjects with family history of T2DM show possibly early signs of endothelial dysfunction that, in certain conditions, could contribute to the higher risk of this group of developing similar pathology to their parents.
Resumo:
Purpose - We performed a study of laser panretinal photocoagulation in 20 patients with proliferative retinopathy. We compared short exposure, high-energy laser settings with conventional settings, using a 532?nm, frequency doubled, Neodymium–Yag laser and assessed the patients in terms of pain experienced and effectiveness of treatment. Methods - Twenty patients having panretinal photocoagulation for the first time underwent random allocation to treatment of the superior and inferior hemi-retina. Treatment A used ‘conventional’ parameters: exposure time 0.1?s, power sufficient to produce a visible grey-white burns, spot size 300?µm. The other hemi- retina was treated with treatment B using exposure 0.02?s, 300?µm and sufficient power to have similar endpoint. All patients were asked to evaluate severity of pain on a visual analogue scale. (0=no pain, 10=most severe pain). All patients were masked as to the type of treatment and the order of carrying out the treatment on each patient was randomised. Patients underwent fundus photography and were followed up for 6–45 months. Results - Seventeen patients had proliferative diabetic retinopathy, two had ischaemic central retinal vein occlusion and one had ocular ischaemic syndrome. The mean response to treatment A was 5.11, compared to 1.40 treatment B, on the visual analogue scale, which was statistically significant (P=0.001). All patients preferred treatment B. Further treatments, if required, were performed with treatment B parameters and long-term follow-up has shown no evidence of undertreatment. Conclusions - Shortening exposure time of retinal laser is significantly less painful but equally effective as conventional parameters.
Resumo:
Purpose: Current panretinal laser photocoagulative parameters are based on the Diabetic Retinopathy Study, which used exposures of 0.1 - 0.5 second to achieve moderate intensity retinal burns. Unfortunately, many patients find these settings painful. We wanted to investigate whether reducing exposure time and increasing power to give the same endpoint, is more comfortable and effective. Methods: 20 patients having panretinal photocoagulation for the first time underwent random allocation to two forms of laser treatment: half of the retinal area scheduled for treatment was treated with Green Yag laser with conventional parameters {exposure time 0.1 second (treatment A), power density sufficient to produce a visible grey - white burns}. The other half treated with shorter exposure 0.02 second (treatment B). All patient were asked to evaluate severity of pain on a visual analogue scale ranging from 0 - 10 (0 = no pain, 10 = most severe pain). All patients were masked as to the type of treatment. The order of carrying out the treatment on each patient was randomised. Fundus photographs were taken of each hemifundus to confirm treatment. Results: Of the 20 patients, 17 had proliferative diabetic retinopathy, 2 had ischaemic central retinal vein occlusion and one had ocular ischaemic syndrome. The average pain response to treatment A was 5.11 on a visual analogue scale with a mean power of 0.178 Watt; the average pain response to treatment B was 1.40 with a mean power of 0.489 Watt. Short exposure laser burns were significantly less painful (P < 0.001). Conclusion: Shortening exposure time with increased power is more comfortable for patients undergoing panretinal photocoagulation than conventional parameters.