951 resultados para Respiratory cooling
Resumo:
The numerical solutions are obtained for skin friction, heat transfer to the wall and growth of boundary layer along the flat plate by employing two dimensional Navier-Stokes equations governing the hypersonic flow coupled with species continuity equations. Flow fields have been computed along the flat plate in CO2 atmosphere in the presence of transpiration cooling using air and carbon dioxide.
Resumo:
In infected tissues oxygen tensions are low. As innate immune cells have to operate under these conditions, we analyzed the ability of macrophages (M phi) to kill Escherichia coli or Staphylococcus aureus in a hypoxic microenvironment. Oxygen restriction did not promote intracellular bacterial growth but did impair the bactericidal activity of the host cells against both pathogens. This correlated with a decreased production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates. Experiments with phagocyte NADPH oxidase (PHOX) and inducible NO synthase (NOS2) double-deficient M phi revealed that in E. coli- or S. aureus-infected cells the reduced antibacterial activity during hypoxia was either entirely or partially independent of the diminished PHOX and NOS2 activity. Hypoxia impaired the mitochondrial activity of infected M phi. Inhibition of the mitochondrial respiratory chain activity during normoxia (using rotenone or antimycin A) completely or partially mimicked the defective antibacterial activity observed in hypoxic E. coli-or S. aureus-infected wild-type M phi, respectively. Accordingly, inhibition of the respiratory chain of S. aureus-infected, normoxic PHOX-/- NOS2(-/-) M phi further raised the bacterial burden of the cells, which reached the level measured in hypoxic PHOX-/- NOS2(-/-) M phi cultures. Our data demonstrate that the reduced killing of S. aureus or E. coli during hypoxia is not simply due to a lack of PHOX and NOS2 activity but partially or completely results from an impaired mitochondrial antibacterial effector function. Since pharmacological inhibition of the respiratory chain raised the generation of ROI but nevertheless phenocopied the effect of hypoxia, ROI can be excluded as the mechanism underlying the antimicrobial activity of mitochondria.
Resumo:
Among all methods of metal alloy slurry preparation, the cooling slope method is the simplest in terms of design and process control. The method involves pouring of the melt from top, down an oblique and channel shaped plate cooled from bottom by counter flowing water. The melt, while flowing down, partially solidifies and forms columnar dendrites on plate wall. These dendrites are broken into equiaxed grains and are washed away with melt. The melt, together with the equiaxed grains, forms semisolid slurry collected at the slope exit and cast into billets having non-dendritic microstructure. The final microstructure depends on several process parameters such as slope angle, slope length, pouring superheat, and cooling rate. The present work involves scaling analysis of conservation equations of momentum, energy and species for the melt flow down a cooling slope. The main purpose of the scaling analysis is to obtain a physical insight into the role and relative importance of each parameter in influencing the final microstructure. For assessing the scaling analysis, the trends predicted by scaling are compared against corresponding numerical results using an enthalpy based solidification model with incorporation of solid phase movement.
Resumo:
Cooling slope (CS) has been used in this study to prepare semi-solid slurry of A356 Al alloy, keeping in view of slurry generation on demand for Rheo-pressure die casting process. Understanding the physics of microstructure evolution during cooling slope slurry formation is important to satisfy the need of semi-sold slurry with desired shape, size and morphology of primary Al phase. Mixture of spherical and rosette shaped primary Al phase has been observed in the samples collected during melt flow through the slope as well as in the cast (mould) samples compared to that of dendritic shape, observed in case of conventionally cast A356 alloy. The liquid melt has been poured into the slope at 650 A degrees C temperature and during flow it falls below the liquidus temperature of the said alloy, which facilitates crystallization of alpha-Al crystals on the cooling slope wall. Crystal separation due to melt flow is found responsible for nearly spherical morphology of the primary Al phase.
Resumo:
Present trend of semi-solid processing is directed towards rheocasting route which allows manufacturing of near-net-shape cast components directly from the prepared semi-solid slurry. Generation of globular equi-axed grains during solidification of rheocast components, compared to the columnar dendritic structure of conventional casting routes, facilitates the manufacturing of components with improved mechanical properties and structural integrity. In the present investigation, a cooling slope has been designed and indigenously fabricated to produce semi solid slurry of Al-Si-Mg (A356) alloy and successively cast in a metallic mould. The scope of the present work discusses about development of a numerical model to simulate the liquid metal flow through cooling slope using Eulerian two-phase flow approach and to investigate the effect of pouring temperature on cooling slope semi-solid slurry generation process. The two phases considered in the present model are liquid metal and air. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling slope, following Schiel's equation. The continuity equation, momentum equation and energy equation are solved considering thin wall boundary condition approach. During solidification of the liquid metal, a modified temperature recovery scheme has been employed taking care of the latent heat release and change of fraction of liquid. The results obtained from simulations are compared with experimental findings and good agreement has been found.
Resumo:
Experimental and numerical studies of slurry generation using a cooling slope are presented in the paper. The slope having stainless steel body has been designed and constructed to produce semisolid A356 Al alloy slurry. The pouring temperature of molten metal, slope angle of the cooling slope and slope wall temperature were varied during the experiment. A multiphase numerical model, considering liquid metal and air, has been developed to simulate the liquid metal flow along the cooling channel using an Eulerian two-phase flow approach. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling channel following Schiel's equation. The continuity, momentum and energy equations are solved considering thin wall boundary condition approach. During solidification of the melt, based on the liquid fraction and latent heat of the alloy, temperature of the alloy is modified continuously by introducing a modified temperature recovery method. Numerical simulations has been carried out for semisolid slurry formation by varying the process parameters such as angle of the cooling slope, cooling slope wall temperature and melt superheat temperature, to understand the effect of process variables on cooling slope semisolid slurry generation process such as temperature distribution, velocity distribution and solid fraction of the solidifying melt. Experimental validation performed for some chosen cases reveals good agreement with the numerical simulations.
Resumo:
Managing heat produced by computer processors is an important issue today, especially when the size of processors is decreasing rapidly while the number of transistors in the processor is increasing rapidly. This poster describes a preliminary study of the process of adding carbon nanotubes (CNTs) to a standard silicon paste covering a CPU. Measurements were made in two rounds of tests to compare the rate of cool-down with and without CNTs present. The silicon paste acts as an interface between the CPU and the heat sink, increasing the heat transfer rate away from the CPU. To the silicon paste was added 0.05% by weight of CNTs. These were not aligned. A series of K-type thermocouples was used to measure the temperature as a function of time in the vicinity of the CPU, following its shut-off. An Omega data acquisition system was attached to the thermocouples. The CPU temperature was not measured directly because attachment of a thermocouple would have prevented its automatic shut-off A thermocouple in the paste containing the CNTs actually reached a higher temperature than the standard paste, an effect easily explained. But the rate of cooling with the CNTs was about 4.55% better.
Resumo:
We study the effects of optically thin radiative cooling on the structure of radiatively inefficient accretion flows (RIAFs). The flow structure is geometrically thick, and independent of the gas density and cooling, if the cooling time is longer than the viscous time-scale (i.e. t(cool) greater than or similar to t(visc)). For higher densities, the gas can cool before it can accrete and forms the standard geometrically thin, optically thick Shakura-Sunyaev disc. For usual cooling processes (such as bremsstrahlung), we expect an inner hot flow and an outer thin disc. For a short cooling time the accretion flow separates into two phases: a radiatively inefficient hot coronal phase and a cold thin disc. We argue that there is an upper limit on the density of the hot corona corresponding to a critical value of t(cool)/t(ff)( similar to 10-100), the ratio of the cooling time and the free-fall time. Based on our simulations, we have developed a model for transients observed in black hole X-ray binaries (XRBs). An XRB in a quiescent hot RIAF state can transition to a cold blackbody-dominated state because of an increase in the mass accretion rate. The transition from a thin disc to a RIAF happens because of mass exhaustion due to accretion; the transition happens when the cooling time becomes longer than the viscous time at inner radii. Since the viscous time-scale for a geometrically thin disc is quite long, the high-soft state is expected to be long-lived. The different time-scales in black hole transients correspond to different physical processes such as viscous evolution, cooling and free fall. Our model captures the overall features of observed state transitions in XRBs.
Resumo:
In this study the cooling performance due to air flow and aerodynamics of the Formula Student open wheeled race car has been investigated and optimized with the help of CFD simulations and experimental validation. The race car in context previously suffered from overheating problems. Flow analysis was carried out based on the detailed race car 3D model (NITK Racing 2012 formula student race car). Wind tunnel experiments were carried out on the same. The results obtained from the computer simulations are compared with experimental results obtained from wind tunnel testing of the full car. Through this study it was possible to locate the problem areas and hence choose the best configuration for the cooling duct. The CFD analysis helped in calculating the mass flow rate, pressure and velocity distribution for different velocities of the car which is then used to determine the heat dissipated by the radiator. Area of flow separation could be visualized and made sure smooth airflow into the radiator core area. This significantly increased the cooling performance of the car with reduction in drag.
Resumo:
In the present work, a cooling channel is employed to produce semi-solid A356 alloy slurry. To understand the transport process involved, a 3D non-isothermal, multiphase volume averaging model has been developed for simulation of the semi-solid slurry generation process in the cooling channel. For simulation purpose, the three phases considered are the parent melt, the nearly spherical grains and air as separated but highly coupled interpenetrating continua. The conservation equations of mass, momentum, energy and species have been solved for each phase and the thermal and mechanical interactions (drag force) among the phases have been considered using appropriate model. The superheated liquid alloy is poured at the top of the cooling slope/channel, where specified velocity inlet boundary condition is used in the model, and allowed to flow along gravity through the channel. The melt loses its superheat and becomes semisolid up to the end of cooling channel due to the evolving -Al grains with decreasing temperature. The air phase forms a definable air/liquid melt interface, i.e. free surface, due its low density. The results obtained from the present model includes volume fractions of three different phases considered, grain evolution, grain growth rate, size and distribution of solid grains. The effect of key process variables such as pouring temperature, slope angle of the cooling channel and cooling channel wall temperature on temperature distribution, velocity distribution, grain formation and volume fraction of different phases are also studied. The results obtained from the simulations are validated by microstructure study using SEM and quantitative image analysis of the semi-solid slurry microstructure obtained from the experimental set-up.
Resumo:
This study is aimed toward obtaining near spherical microstructural features of Rheocast A380 aluminum alloy. Cooling slope (CS) technique has been used to generate semisolid slurry from the superheated alloy melt. Spherodization of primary grains is the heart of semisolid processing which improves mechanical properties significantly in the parts cast from semisolid state compared to the conventional casting processes. Keeping in view of the desired microstructural morphology, i.e., rosette or spherical shape of primary alpha-Al phase, successive slurry samples have been collected during melt flow and oil quenched to investigate the microstructure evolution mechanism. Conventionally cast A380 Al alloy sample shows dendritic grains surrounded by large eutectic phase whereas finer, near spherical grains have been observed within the cooling slope processed slurry and also in the solidified castings which confirms the effectiveness of semisolid processing of the alloy following cooling slope technique. Grain refiner addition into the alloy melt is found to have favorable effect which leads to the generation of finer primary grains within the slurry with higher degree of sphericity.
Resumo:
The present work presents the results of experimental investigation of semi-solid rheocasting of A356 Al alloy using a cooling slope. The experiments have been carried out following Taguchi method of parameter design (orthogonal array of L-9 experiments). Four key process variables (slope angle, pouring temperature, wall temperature, and length of travel of the melt) at three different levels have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) has also been performed to develop a mathematical model for degree of sphericity evolution of primary alpha-Al phase and to find the significance and percentage contribution of each process variable towards the final outcome of degree of sphericity, respectively. The best processing condition has been identified for optimum degree of sphericity (0.83) as A(3), B-3, C-2, D-1 i.e., slope angle of 60 degrees, pouring temperature of 650 degrees C, wall temperature 60 degrees C, and 500 mm length of travel of the melt, based on mean response and signal to noise ratio (SNR). ANOVA results shows that the length of travel has maximum impact on degree of sphericity evolution. The predicted sphericity obtained from the developed regression model and the values obtained experimentally are found to be in good agreement with each other. The sphericity values obtained from confirmation experiment, performed at 95% confidence level, ensures that the optimum result is correct and also the confirmation experiment values are within permissible limits. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We study the interplay between turbulent heating, mixing, and radiative cooling in an idealized model of cool cluster cores. Active galactic nuclei (AGN) jets are expected to drive turbulence and heat cluster cores. Cooling of the intracluster medium (ICM) and stirring by AGN jets are tightly coupled in a feedback loop. We impose the feedback loop by balancing radiative cooling with turbulent heating. In addition to heating the plasma, turbulence also mixes it, suppressing the formation of cold gas at small scales. In this regard, the effect of turbulence is analogous to thermal conduction. For uniform plasma in thermal balance (turbulent heating balancing radiative cooling), cold gas condenses only if the cooling time is shorter than the mixing time. This condition requires the turbulent kinetic energy to be a parts per thousand(3) the plasma internal energy; such high velocities in cool cores are ruled out by observations. The results with realistic magnetic fields and thermal conduction are qualitatively similar to the hydrodynamic simulations. Simulations where the runaway cooling of the cool core is prevented due to mixing with the hot ICM show cold gas even with subsonic turbulence, consistent with observations. Thus, turbulent mixing is the likely mechanism via which AGN jets heat cluster cores. The thermal instability growth rates observed in simulations with turbulence are consistent with the local thermal instability interpretation of cold gas in cluster cores.
Resumo:
Simulations using Ansys Fluent 6.3.26 have been performed to look into the adsorption characteristics of a single silica gel particle exposed to saturated humid air streams at Re=108 & 216 and temperature of 300K. The adsorption of the particle has been modeled as a source term in the species and the energy equations using a Linear Driving Force (LDF) equation. The interdependence of the thermal and the water vapor concentration field has been analysed. This work is intended to aid in understanding the adsorption effects in silica gel beds and in their efficient design. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).