963 resultados para Resistivity probe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

First systematic spin probe ESR study of water freezing has been conducted using TEMPOL and TEMPO as the probes. The spin probe signature of the water freezing has been described in terms of the collapse of narrow triplet spectrum into a single broad line. This spin probe signature of freezing has been observed at an anomalously low temperature when a milimoler solution of TEMPOL is slowly cooled from room temperature. A systematic observation has revealed a spin probe concentration dependence of these freezing and respective melting points. These results can be explained in terms of localization of spin probe and liquid water,most probably in the interstices of ice grains, in an ice matrix. The lowering of spin probe freezing point, along with the secondary evidences, like spin probe concentration dependence of peak-to-peak width in frozen limit signal, indicates a possible size dependence of these localizations/entrapments with spin probe concentration. A weak concentration dependence of spin probe assisted freezing and melting points, which has been observed for TEMPO in comparison to TEMPOL, indicates different natures of interactions with water of these two probes. This view is also supported by the relaxation behavior of the two probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectra of molecules oriented in liquid crystalline media are dominated by partially averaged dipolar couplings. In the 13C–1H HSQC, due to the inefficient hetero-nuclear dipolar decoupling in the indirect dimension, normally carried out by using a π pulse, there is a considerable loss of resolution. Furthermore, in such strongly orienting media the 1H–1H and 13C–1H dipolar couplings leads to fast dephasing of transverse magnetization causing inefficient polarization transfer and hence the loss of sensitivity in the indirect dimension. In this study we have carried out 13C–1H HSQC experiment with efficient polarization transfer from 1H to 13C for molecules aligned in liquid crystalline media. The homonuclear dipolar decoupling using FFLG during the INEPT transfer delays and also during evolution period combined with the π pulse heteronuclear decoupling in the t1 period has been applied. The studies showed a significant reduction in partially averaged dipolar couplings and thereby enhancement in the resolution and sensitivity in the indirect dimension. This has been demonstrated on pyridazine and pyrimidine oriented in the liquid crystal. The two closely resonating carbons in pyrimidine are better resolved in the present study compared to the earlier work [H.S. Vinay Deepak, Anu Joy, N. Suryaprakash, Determination of natural abundance 15N–1H and 13C–1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments, Magn. Reson. Chem. 44 (2006) 553–565].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements on the solid electrolyte cell(Ar -b H2 ~ H2S/CaS + CaF2 ~- ( P t ) / / C a F 2 / / ( P t )-~- CaF2 ~ CaS/H2S ~- H2 ~- At) show that the emf of the cell is directly related through the Nernst equation to the difference in sulfur potentials established at the two Ar ~- H2 ~ H2S/electrode interfaces. The electrodes are designed to convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient with the aid of the reaction, CaF2(s) ~ 1~ S2(g)-e CaS(s) ~- F2(g). The response time of the probe varies from approximately 9 hr at 990~ to 2.5 hr at 1225~ The conversion of calcium sulfide and/or calcium fluoride into calcium oxide should not be a problem in anticipated commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conductivity measurements as a function of temperature and partial pressures of SOs, SO2, and O2, and transference experiments indicate that the transport number of Na + ions is unity in Na2SO4-I. A concentration cell based on this electrolyte Pt, O2' + SO2' + SOs'/Na2SO4-I/SOa" + SO~" + O~", Pt produces emf's that are in agreement with those calculated from the Nernst equation when equilibrium is assumed between the gas species at the electrodes. The cell can be used for monitoring the SO#SOs pollution in air, and in combination with an oxygen probe can be used for the determination of SO=/SOs concentrations in coal combustion reactors, for the evaluation of the partial pressure of $2 in coal gasification systems, and for emission control in nonferrous smelters using sulfide ores. The probe is similar to that developed recently by Gauthier et aL (4, 5) using K=SO4 as the electrolyte, but can operate at higher pressures of SO3. Because of the greater polarizing power of the Na+ ion compared to the K + ion, Na2S207 is less stable and can be formed only at a considerably higher pressure of S03 than that required for K~20~.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport and magnetic properties of flux-grown Nd1−xPbxMnO3 single crystals (x=0.15–0.5) are studied in the temperature range 300–77 K and 280–2 K, respectively. Magnetization measurements with a superconducting quantum interference device confirm a paramagnetic to ferromagnetic transition around 110, 121, 150, 160, and 178 K for x=0.15, 0.2, 0.3, 0.4, and 0.5, respectively. Four probe resistivity measurements at low temperatures show a monotonic increase for x=0.15 which represents a ferromagnetic insulating (FMI) phase. For Nd0.8Pb0.2MnO3 there is a slope change present in the resistivity profile at 127 K where metal to insulator transition (MI) sets in. For x=0.3 this MI transition is more prominent. However, both these samples have FMI phase at low temperature. When the concentration of lead increases (x>0.3) the sample displays a clear insulator to metal transition with a low temperature ferromagnetic metallic phase. On the basis of these measurements we have predicted the phase diagram of Nd1−xPbxMnO3. Magnetization measurements by a vibration sample magnetometer point out the appreciable differences between zero field cooled and field cooled profiles below the ferromagnetic to paramagnetic transition temperature for all x. These are indicative of magnetic frustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of activity of cloned promoters in slow-growing Mycobacterium tuberculosis during long-term growth conditions in vitro or inside macrophages, requires a genome-integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate-independent, easily scorable and highly sensitive reporter gene. In order to meet this requirement, we constructed pAKMN2, which contains mycobacterial codon-optimized gfpm2+ gene, coding for GFPm2+ of highest fluorescence reported till date, mycobacteriophage L5 attP-int sequence for genome integration, and a multiple cloning site. pAKMN2 showed stable integration and expression of GFPm2+ from M. tuberculosis and M. smegmatis genome. Expression of GFPm2+, driven by the cloned minimal promoters of M. tuberculosis cell division gene, ftsZ (MtftsZ), could be detected in the M. tuberculosis/pAKMN2-promoter integrants, growing at exponential phase in defined medium in vitro and inside macrophages. Stable expression from genome-integrated format even without antibiotic, and high sensitivity of detection by flow cytometry and fluorescence imaging, in spite of single copy integration, make pAKMN2 useful for the study of cloned promoters of any mycobacterial species under long-term in vitro growth or stress conditions, or inside macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current injection pattern in Electrical Impedance Tomography (EIT) has its own current distribution profile within the domain under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability. Image reconstruction studies with practical phantoms are essential to assess the performance of EIT systems for their validation, calibration and comparison purposes. Impedance imaging of real tissue phantoms with different current injection methods is also essential for better assessment of the biomedical EIT systems. Chicken tissue paste phantoms and chicken tissue block phantoms are developed and the resistivity image reconstruction is studied with different current injection methods. A 16-electrode array is placed inside the phantom tank and the tank is filled with chicken muscle tissue paste or chicken tissue blocks as the background mediums. Chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. A low magnitude low frequency constant sinusoidal current is injected at the phantom boundary with opposite and neighboring current patterns and the boundary potentials are measured. Resistivity images are reconstructed from the boundary data using EIDORS and the reconstructed images are analyzed with the contrast parameters calculated from their elemental resistivity profiles. Results show that the resistivity profiles of all the phantom domains are successfully reconstructed with a proper background resistivity and high inhomogeneity resistivity for both the current injection methods. Reconstructed images show that, for all the chicken tissue phantoms, the inhomogeneities are suitably reconstructed with both the current injection protocols though the chicken tissue block phantom and opposite method are found more suitable. It is observed that the boundary potentials of the chicken tissue block phantoms are higher than the chicken tissue paste phantom. SNR of the chicken tissue block phantoms are found comparatively more and hence the chicken tissue block phantom is found more suitable for its lower noise performance. The background noise is found less in opposite method for all the phantom configurations which yields the better resistivity images with high PCR and COC and proper IRMean and IRMax neighboring method showed higher noise level for both the chicken tissue paste phantoms and chicken tissue block phantoms with all the inhomogeneities. Opposite method is found more suitable for both the chicken tissue phantoms, and also, chicken tissue block phantoms are found more suitable compared to the chicken tissue paste phantom. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental crystal structures of mono and polyfluorinated benzoic acids correspond to high energy computed crystal structures of benzoic acid itself, thereby permitting access to its structural landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448-11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new bis-indolyl-based colorimetric probe has been synthesized. This allows a Michael-type adduct formation for the detection of cyanide ions. The probe shows a remarkable color change from red to colorless upon addition of the cyanide ions in pure water. The cyanide ion reacts with the probe and removes the conjugation of the bis-indolyl moiety of the probe with that of the 4-substituted aromatic ring. This renders the probe colorless. The mechanism of the reaction of the probe with the cyanide ion was established by using 1H and 13C NMR spectroscopy, mass spectrometry, and kinetic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high energy ep collider, such as the proposed LHeC, possesses the unique facility of permitting direct measurement of the HWW coupling without contamination from the HZZ coupling. At such a machine, the fusion of two W bosons through the HWW vertex would give rise to typical charged current events accompanied by a Higgs boson. We demonstrate that azimuthal angle correlations between the observable charged current final states could then be a sensitive probe of the nature of the HWW vertex and hence of the CP properties of the Higgs boson. DOI: 10.1103/PhysRevLett.109.261801

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quaternary chalcogenide compounds Cu2+ xZnSn1-xSe4 (0 <= x <= 0.15) were prepared by solid state synthesis. Rietveld powder X-ray diffraction (XRD) refinements combined with Electron Probe Micro Analyses (EPMA, WDS-Wavelength Dispersive Spectroscopy) and Raman spectra of all samples confirmed the stannite structure (Cu2FeSnS4-type) as the main phase. In addition to the main phase, small amounts of secondary phases like ZnSe, CuSe and SnSe were observed. Transport properties of all samples were measured as a function of temperature in the range from 300 K to 720 K. The electrical resistivity of all samples decreases with an increase in Cu content except for Cu2.1ZnSn0.9Se4, most likely due to a higher content of the ZnSe. All samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was high compared to Cu2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.3 at 720 K occurs for Cu2.05ZnSn0.95Se4 for which a high-pressure torsion treatment resulted in an enhancement of zT by 30% at 625 K. Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4794733]