973 resultados para Renewable fuel standard
Resumo:
We describe a polygeneration system that can run on neat plant oils, such as Jatropha and Pongamia, or standard diesel fuel. A prototype has been constructed using a compression ignition engine of 9.9 kW shaft output. It consumes 3 L/h of fuel and will produce 40 kg/h of ice by means of an adsorption refrigerator powered from the engine jacket heat. Steaming of rice, deep and shallow frying, and other types of food preparation heated by the exhaust gas have been demonstrated. In addition, the feasibility of producing distilled water by means of multiple-effect distillation powered by the engine waste heat is shown. Overall plant efficiency and potential savings in greenhouse gas emissions are discussed. © 2012 Elsevier Ltd.
Resumo:
This article presents a potential method to assist developers of future bioenergy schemes when selecting from available suppliers of biomass materials. The method aims to allow tacit requirements made on biomass suppliers to be considered at the design stage of new developments. The method used is a combination of the Analytical Hierarchy Process and the Quality Function Deployment methods (AHP-QFD). The output of the method is a ranking and relative weighting of the available suppliers which could be used to improve optimization algorithms such as linear and goal programming. The paper is at a conceptual stage and no results have been obtained. The aim is to use the AHP-QFD method to bridge the gap between treatment of explicit and tacit requirements of bioenergy schemes; allowing decision makers to identify the most successful supply strategy available.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of routes to utilise renewable feedstocks as sustainable sources of fuel and chemicals. Catalysis has a rich history of facilitating energy-efficient selective molecular transformations and contributes to 90% of chemical manufacturing processes and to more than 20% of all industrial products. In a post-petroleum era, catalysis will be central to overcoming the engineering and scientific barriers to economically feasible routes to biofuels and chemicals. This chapter will highlight some of the recent developments in heterogeneous catalytic technology for the synthesis of fuels and chemicals from renewable resources, derived from plant and aquatic oil sources as well as lignocellulosic feedstocks. Particular attention will be paid to the challenges faced when developing new catalysts and importance of considering the design of pore architectures and effect of tuning surface polarity to improve catalyst compatibility with highly polar bio-based substrates.
Resumo:
Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.
Resumo:
Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.
Resumo:
The paper studies a generalisation of the dynamic Leontief input-output model. The standard dynamic Leontief model will be extended with the balance equation of renewable resources. The renewable stocks will increase regenerating and decrease exploiting primary natural resources. In this study the controllability of this extended model is examined by taking the consumption as the control parameter. Assuming balanced growth for both consumption and production, we investigate the exhaustion of renewable resources in dependence on the balanced growth rate and on the rate of natural regeneration. In doing so, classic results from control theory and on eigenvalue problems in linear algebra are applied.
Resumo:
A tanulmány azt a kérdést vizsgálja, hogy versenyeznek-e az európai kormányok gázolajra vonatkozó jövedékiadó-kulcsaikkal a nagyobb adóbevételekért, és ha igen, befolyásolja-e az országok mérete kormányaik adóztatási stratégiáját. Az üzemanyagturizmussal szembesülő kormányok adókivetési magatartását egy kétországos adóverseny modellel jelezzük előre, amelyben a standard modellektől eltérően a fogyasztók kereslete árrugalmas. Megmutatjuk, hogy ha a kereslet nem teljesen rugalmatlan, mint Nielsen [2001], illetve Kanbur-Keen [1993] modelljeiben, akkor a nagy ország kormányának egyensúlyi viselkedése nemcsak abban különbözik a kicsiétől, hogy nagyobb adót állapít meg, hanem abban is, hogy válaszfüggvénye meredekebb. Az aszimmetrikus adóverseny általunk használt modelljét a dízelüzemanyagoknak 16 európai ország 1978 és 2005 közötti jövedékiadó-adatain vizsgáljuk. Az 1995 és 2005 közötti időszakra vonatkozó becslési eredményeink megerősítik, hogy az európai országok szomszédaik adókulcs-változtatásának hatására változtattak saját adókulcsaikon, és hogy a területileg/gazdaságilag kisebb országok kisebb intenzitással reagáltak szomszédaik adóváltoztatásra, mint a nagyobbak. Tanulmányunk ezzel magyarázatot nyújt arra is, hogy miért erősödött fel a tagállamok jövedéki adókulcsainak méret szerinti differenciálódása az elmúlt bő tíz évben, valamint hogy miért nem sikerült az Európai Uniónak a minimumadószintre vonatkozó előírásával előbbre lépnie az egységes adóztatás megvalósításában. / === / The paper assesses spatial competition in diesel taxation among European governments. By adding an extension to the standard model, it is shown that asymmetric competition – small countries undercutting large – implies that small countries respond less strongly to tax changes by their neighbours than large countries do. An estimate is then made of the fiscal reaction functions for national governments, employing a first-difference regression model with a weighting scheme constructed from road-traffic density data at national borders. Data from 16 countries (EU-15 minus Greece plus Norway and Switzerland) between 1978 and 2005 provides evidence that European governments set their diesel tax interdependently, and moreover, that small European countries tend to react less strongly to changes in their competitors' tax rate than large countries do.
Resumo:
The paper studies a generalisation of the dynamic Leontief input-output model. The standard dynamic Leontief model will be extended with the balance equation of renewable resources. The renewable stocks will increase regenerating and decrease exploiting primary natural resources. In this study the controllability of this extended model is examined by taking the consumption as the control parameter. Assuming balanced growth for both consumption and production, we investigate the exhaustion of renewable resources in dependence on the balanced growth rate and on the rate of natural regeneration. In doing so, classic results from control theory and on eigenvalue problems in linear algebra are applied.
Resumo:
The introduction of CNG (Compressed Natural Gas) as automotive fuel began in Italy as early as in mid- 1930s, and ever since the Italian market has always been highly advanced in this regard. Many other countries followed, some of them quite recently, but nevertheless with impressive results. The appeal of this automotive fuel is based on the fact that compared to gasoline, diesel and LPG (Liquefied Petroleum Gas), CNG is cleaner and cheaper; even more so, this fuel is renewable – it can be produced locally from biogas. Despite its obvious benefits, CNG is barely present in Hungary. This article provides an insight into the topic, highlights obstacles to introduction and suggests appropriate governmental steps. The information is intended to support the activities and the decision-making process of governmental officials, municipalities, car-fleet managers, car dealers and their service departments.
Resumo:
Current energy systems are in most instances not fully working sustainably. The provision and use of energy only consider limited resources, risk potential or financial constraints on a limited scale. Furthermore, the knowledge and benefits are only available for a minor group of the population or are outright neglected. The availability of different resources for energy purposes determines economic development, as well as the status of the society and the environment. The access to energy grids has an impact on socio-economic living standards of communities. This not fully developed system is causing climate change with all its related outcomes. This investigation takes into consideration different views on renewable energy systems — such as international discussions about biomass use for energy production, “fuel versus food”, biogas use — and attempts to compare major prospects of social acceptance of renewable energy in Europe and Africa. Can all obstacles to the use of renewable energy be so profound that the overall strategy of reducing anthropogenic causes of climate change be seriously affected?
Resumo:
Current energy systems are in most instances not fully working sustainably. The provision and use of energy only consider limited resources, risk potential or financial constraints on a limited scale. Furthermore, the knowledge and benefits are only available for a minor group of the population or are outright neglected. The availability of different resources for energy purposes determines economic development, as well as the status of the society and the environment. The access to energy grids has an impact on socio-economic living standards of communities. This not fully developed system is causing climate change with all its related outcomes. This investigation takes into consideration different views on renewable energy systems — such as international discussions about biomass use for energy production, “fuel versus food”, biogas use — and attempts to compare major prospects of social acceptance of renewable energy in Europe and Africa. Can all obstacles to the use of renewable energy be so profound that the overall strategy of reducing anthropogenic causes of climate change be seriously affected?
Resumo:
In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.
Resumo:
In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.
Resumo:
In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.
Resumo:
Cobalt-free composite cathodes consisting of Pr0.6Sr0.4FeO 3-δ -xCe0.9Pr0.1O 2-δ (PSFO-xCPO, x = 0-50 wt%) have been synthesized using a one-pot method. X-ray diffraction, scanning electron microscopy, thermal expansion coefficient, conductivity, and polarization resistance (R P ) have been used to characterize the PSFO-xCPO cathodes. Furthermore the discharge performance of the Ni-SSZ/SSZ/GDC/PSFO-xCPO cells has been measured. The experimental results indicate that the PSFO-xCPO composite materials fully consist of PSFO and CPO phases and posses a porous microstructure. The conductivity of PSFO-xCPO decreases with the increase of CPO content, but R P of PSFO-40CPO shows the smallest value amongst all the samples. The power density of single cells with a PSFO-40CPO composite cathode is significantly improved compared with that of the PSFO cathode, exhibiting 0.43, 0.75, 1.08 and 1.30 W cm-2 at 650, 700, 750 and 800 °C, respectively. In addition, single cells with the PSFO-40CPO composite cathode show a stable performance with no obvious degradation over 100 h when operating at 750 °C.