648 resultados para Relational fuzzy clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identity is traditionally defined as an emission concept (Kapferer, 2008). Yet, some research points out that there are external factors that that can influence it (Kennedy, 1975; Markwick e Fill, 1997; Balmer e Gray, 2000). This subject is even more interesting if one considers corporate brands. According to Aaker (2004) the number, the power and the credibility of corporate associations are bigger in the case corporate brands. Literature recognizes the influence of relationships between companies in identity management (Hakansson and Snehota, 1989, 1995; Hakansson and Ford, 2002). Yet, given the increasingly important role of corporate brands, it is surprising that to date no attempt to evaluate that influence has been made in corporate brand´s identity management and reputation. Also Keller and Lehman (2006) highlight relationships and costumer experience as two areas requiring more investigation. The authors argue that corporate brand´s identity can be developed under a relational perspective using relationships with other recognised brands in order to generate positive reputations in stakeholders. Based in relationship and corporate brand identity management, a framework is developed to identify how corporate brands select, develop and invest in relationships with other brands. The context of the proposed relationship concept is the services area (Dwyer et al, 1987; Moorman et al, 1992; Rauyruen et al, 2005 and Hennig-Thurau and Klee, 1997). An empirical qualitative research is designed using two reputational technological higher education institutions (two corporate brands) acting in Portuguese public higher education market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Desenvolver e comparar dois modelos matemáticos, um deles baseado em regressão logística e o outro em teoria de conjuntos fuzzy, para definir a indicação para a realização do exame cintilográfico a partir de resultados dos exames laboratoriais. MÉTODOS: Foram identificados 194 pacientes que tiveram cálcio e paratormônio séricos medidos a partir da base de registros de cintilografia de paratiróides realizadas em laboratório de diagnóstico de São Paulo, no período de janeiro de 2000 a dezembro de 2004. O modelo de regressão logística foi desenvolvido utilizando-se o software SPSS e o modelo fuzzy, o Matlab. A performance dos modelos foi comparada utilizando-se curvas ROC. RESULTADOS: Os modelos apresentaram diferenças estatisticamente significantes (p=0,026) nos seus desempenhos. A área sob a curva ROC do modelo de regressão logística foi de 0,862 (IC 95%: 0,811-0,913) e do modelo de lógica fuzzy foi 0,887 (IC 95%: 0,840-0,933). Este último destacou-se como particularmente útil porque, ao contrário do modelo logístico, mostrou capacidade de utilizar informações de paratormônio em intervalo em que os valores de cálcio mostraram-se pouco discriminantes. CONCLUSÕES: O modelo matemático baseado em teoria de conjuntos fuzzy pareceu ser mais adequado do que o baseado em regressão logística como método para decisão da realização de cintilografia das paratiróides. Todavia, sendo resultado de um exercício metodológico, inferências sobre o comportamento do objeto podem ser impróprias, dada a não representatividade populacional dos dados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica na Área de Especialização de Energia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TPM Vol. 21, No. 4, December 2014, 435-447 – Special Issue © 2014 Cises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering analysis is a useful tool to detect and monitor disease patterns and, consequently, to contribute for an effective population disease management. Portugal has the highest incidence of tuberculosis in the European Union (in 2012, 21.6 cases per 100.000 inhabitants), although it has been decreasing consistently. Two critical PTB (Pulmonary Tuberculosis) areas, metropolitan Oporto and metropolitan Lisbon regions, were previously identified through spatial and space-time clustering for PTB incidence rate and risk factors. Identifying clusters of temporal trends can further elucidate policy makers about municipalities showing a faster or a slower TB control improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.