880 resultados para Reinforced concrete sandwich panels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ductility of concrete made with commercially available steel and synthetic fibres has been investigated. Flexural stress–deflection relationships have been used to determine: flexural strength, flexural toughness, equivalent flexural strength, and equivalent flexural strength ratio. The flexural toughness of concrete was found to increase considerably when steel and synthetic fibres were used. However, equal dosages of different fibres did not result in specimens with the same flexural toughness. Flexural toughness differences of almost 35 J existed even at the same fibre dosage. This also resulted in considerable differences in the minimum required ground supported slab thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The artefact was published in the following :

Bennett, D., (October 2007), Architectural Insitu Concrete, RIBA Publishing, London, , ISBN 124-3671-245, pp 101-103

Bennett, D., (2008), Concrete Elegance Four, London, Concrete Centre and RIBA Publishing, pp cover, c, 4, 9-12 & back.

Stacey, Professor M., (2011) Concrete: a studio design guide, London, Concrete Centre and RIBA Publishing, pp74-75.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries. If this natural tendency to expand is restrained, the development of arching action enhances the strength of the slab. The term arching action is normally used to describe the arching phenomenon in one-way spanning slabs and compressive membrane action is normally used to describe the arching phenomenon in two-
way spanning slabs. This encyclopedic article presents the background to the discovery of the phenomenon of arching action and presents a factual history of the approaches to the treatment of arching action in the United Kingdom and North American bridge deck design codes. The article summarises the theoretical methodology used in the United Kingdom Design Manual for Roads and Bridges, BD81/02, which was based on the work by Kirkpatrick, Rankin & Long at Queen's University Belfast.